Зачем нужна? Смазочная система двигателя выполняет несколько важных функций. Используемая в ней рабочая жидкость не только уменьшает силу трения между подвижными деталями, но и охлаждает основные узлы мотора, одновременно очищая их от загрязнений и предотвращая коррозию.
На что обратить внимание? Если хотя бы один из компонентов системы смазки по тем или иным причинам начинает работать не совсем корректно, проблему нельзя игнорировать. Нужно сразу же принять необходимые меры по ремонту или замене, иначе последствия могут быть самыми неприятными.
В этой статье:
Назначение смазочной системы двигателя
Двигатель внутреннего сгорания обеспечивает движение автомобиля, и в этом отношении его можно назвать главным узлом. Мотор состоит из множества деталей, некоторые из которых подвижны, что делает их уязвимыми перед трением и вызванным этим износом. Как известно, при трении выделяется тепло, что заставляет физические тела расширяться, и для элементов двигателя это крайне неблагоприятный фактор.
Из-за сокращения зазоров, в которые к тому же попадают продукты износа, поверхности начинают еще больше соприкасаться друг с другом, что оказывает на материал разрушительное воздействие и может привести к полному заклиниванию. Наконец, сила трения снижает коэффициент полезного действия двигателя. Все это объясняет, почему так важно минимизировать трение подвижных частей любой техники.
Простейшим решением данных проблем является использование смазки. Тем самым сухое трение заменяется на намного более щадящее мокрое, отчего сокращается механический износ соприкасающихся поверхностей.
Профилактика поломок Назначение смазочной системы двигателя
Применение смазки имеет и другие ощутимые выгоды:
Чтобы масло обеспечивало все вышеперечисленные функции, оно должно непрерывно циркулировать, что дает возможность ему очищаться и охлаждаться.
Элементы системы
Смазочная система напрямую встроена в различные узлы автомобиля, и прежде всего является частью конструкции двигателя.
Основные элементы смазочной системы двигателя автомобиля:
Общее устройство смазочной системы одинаково во всех типах двигателей – отличия касаются лишь конструкционных особенностей. Также отличаются по своим характеристикам моторные масла, к примеру есть отдельные для дизельных моторов, у которых рабочие температуры достигают более высоких показателей, чем у бензиновых.
Хотя базовая основа масла для смазочной системы дизельного двигателя может быть такой же, как и для бензинового, там используются другие присадки, дающие смазочной жидкости дополнительные свойства.
Эти масла обладают более высокой моющей способностью, поскольку дизельный мотор производит достаточно много сажи. Также они должны быть устойчивы к окислению, так как из-за высокой степени сжатия в картер могут попасть отработавшие газы, запускающие процессы окисления.
Принцип работы смазочной системы двигателя
Работа смазочной системы обеспечивает подачу масла на все трущиеся детали двигателя. Когда машина не заведена, масло размещается в поддоне картера. Сразу после запуска мотора включается насос, который забирает жидкость из картера и заполняет ей всю систему, прогоняя масло через фильтр: смазка поступает к коренным и шатунным подшипникам коленвала, а также опорным подшипникам и кулачкам распредвала ГРМ.
Из переднего коренного подшипника коленчатого вала масло идет на привод ГРМ и в головку блока цилиндров, где образуется масляная ванна, благодаря чему смазываются коромысла, толкатели, клапаны и другие детали. Из ГБЦ моторное масло уходит в поддон по сливным каналам.
Также масло подается в каналы в шатунах и разбрызгивается на стенки цилиндров и поверхности поршней: с помощью смазки происходит их охлаждение, плюс снижается трение поршневых колец о стенки цилиндра. В некоторых типах двигателях смазку поршневых пальцев и цилиндров обеспечивает масляный туман, который образуют мелкие частицы жидкости, распыленные в воздухе. Он создается тем, что капли стекающей вниз смазочной жидкости разбиваются деталями кривошипно-шатунного механизма. Кроме того, пары выделяются и тем маслом, которое выдавливается из-под шатунных подшипников.
Если мотор оснащен системой турбонаддува, главным элементом которой является турбокомпрессор, нагнетающий в двигатель дополнительный воздух, то на него тоже подается масло: с учетом высокой скорости вращения компрессор, лишенный смазки, быстро выйдет из строя.
Типы систем смазочной системы двигателя
Несмотря на существование единых принципов функционирования, есть и особенности конструктивных схем смазочной системы двигателя, так что возможна их классификация по разным критериям.
Типы систем смазочной системы двигателя
В таких двигателях масло содержится не в поддоне, а в отдельном баке. Эта емкость дополнительно защищает смазочную жидкость от загрязнения и взбалтывания. Кроме того, так обеспечивается более высокое и стабильное давление при любом положении автомобиля. Для гоночных автомобилей важным преимуществом является более низкое расположение двигателя из-за отсутствия необходимости оставлять объемный поддон.
Конечно, отличия есть и в том, какие масла применяются в смазочной системе двигателя, – здесь лучше прислушиваться к рекомендациям производителей машин.
Товары из категории
Перейти в каталог
Причины возможных неисправностей
Число неисправностей смазочной системы двигателя невелико, и внешне это проявляется двумя способами: резкое увеличение расхода масла и снижение давления, о чем сигнализирует специальный датчик. Исходя из того, что заставило владельца авто насторожиться, и производится поиск источника проблемы.
Неисправности, связанные с быстрым расходом моторного масла:
Причины, почему может гореть индикатор давления масла:
Игнорировать возникшую проблему нельзя, поскольку двигатель, не получающий необходимой смазки, быстро выходит из строя, что выльется в дорогостоящий ремонт. Поэтому, если у вас на приборной панели загорелась «масленка», то срочно проведите диагностирование смазочной системы двигателя. Начните с проверки уровня масла щупом – чаще всего требуется лишь доливка смазочной жидкости. Если же уровень в норме, то необходимо обратиться на станцию технического обслуживания для проведения полной диагностики.
Причины возможных неисправностей
Профилактика поломок
Именно нормальное функционирование системы смазки является залогом исправности и долговечности двигателя. Масляное голодание неизбежно приводит к серьезным поломкам вплоть до таких, которые потребуют капитального ремонта.
Чтобы избежать проблем, нужно регулярно проводить техническое обслуживание смазочной системы двигателя. Возьмите себе за правило проверять уровень масла, в установленные сроки менять саму смазочную жидкость и фильтр, а при любой неисправности как можно быстрее ее устранять.
Ежедневное обслуживание автомобиля включает в себя проверку уровня масла и при необходимости его долив.
При ТО-1 производится слив отстоя из масляных фильтров, причем это делается на прогретом движке. Кроме того, следует промыть фильтр грубой очистки и фильтр вентиляции картера, а также проверить крепление всех узлов.
В плановые работы ТО-2, помимо этих операций, входит очистка центробежного фильтра тонкой очистки, трубок и клапана системы вентиляции картера.
Заправочное и смазочное оборудование
При сезонном обслуживании происходит замена масла на тот тип, который соответствует периоду, а система промывается маловязким маслом или специальной промывочной жидкостью. Правда, использование отдельных видов масла для зимнего и летнего времени не является обязательным требованием, поскольку сейчас распространены всесезонные сорта.
Каждый автовладелец должен уметь проверить уровень масла. Сделать это несложно, хотя есть и определенные правила: двигатель прогревают, после чего останавливают и ждут примерно пять минут, чтобы смазочная жидкость успела стечь в поддон картера.
Также можно оценить качество жидкости, капнув ею на лист бумаги: масло не должно быть темным и очень густым, и в нем не допускается наличие вкраплений, представляющих собой металлические примеси.
Периодичность замены масла указывается в инструкции по эксплуатации автомобиля. Это делается тоже на разогретом двигателе, чтобы смазка имела менее вязкое состояние – в этом случае получится более быстрый и качественный слив ее из картера.
Еще рекомендуется перед заливом нового масла сделать промывку смазочной системы двигателя специальной маловязкой жидкостью. В этом случае двигатель запускается для работы на холостом ходу в течение 4-5 минут, после чего можно очистить систему от промывочной жидкости и наполнить ее свежим маслом.
Не забудьте, что одновременно с маслом меняется и фильтр – полностью или фильтрующий элемент, в зависимости от конструкции устройства. Существуют двигатели с центробежными масляными фильтрами – там разбирается и чистится центрифуга. Затем фильтр собирается, и проверяется его работа, так чтобы после остановки двигателя ротор продолжал вращаться не менее 2-3 минут.
Важным условием поддержания двигателя в исправном состоянии является грамотная эксплуатация ДВС, с учетом особенностей системы смазки. Так, в морозную погоду следует обязательно прогревать мотор, на что стоит потратить несколько минут. Дело в том, что на холоде масло густеет и теряет свои свойства, а разогрев возвращает ему нужную консистенцию.
Ни в коем случае не стоит экономить на замене масляного фильтра, поскольку это может потом вам дорого обойтись – любой из них со временем засоряется и плохо пропускает масло. Аналогичным образом при износе других элементов системы смазки лучше их менять, а не пытаться восстанавливать. К примеру, изношенная наружная поверхность втулок насоса способна вызвать деформацию корпуса.
В целом, система смазки играет важнейшую роль в работоспособности любого двигателя. Поэтому следует вовремя менять расходники – смазочные жидкости, фильтры, выбирая продукцию, рекомендованную производителем. Также необходимо ежедневно проверять уровень масла в картере. Если возникла неисправность и требуется частичная разборка мотора, то лучше доверить ремонт смазочной системы двигателя специалистам.
Конструктивные особенности и принцип работы кривошипно-шатунного механизма ДВС
Кривошипно-шатунный механизм (КШМ) — это одна из главных из систем ДВС, которая трансформирует возвратно-поступательные перемещения поршня во вращательную работу коленвала. Включает подвижные и статичные элементы, крепежи, шатунные, коренные подшипники. Относится к конструктивно сложным узлам.
В ходе эксплуатации силовая установка обеспечивает непрерывное передвижение и желательно, чтобы оно оставалось равномерным. При этом цилиндро-поршневая группа генерирует поступательное перемещение. Это порождает необходимость трансформации одного вида движения в другое с наименьшими издержками. Такая функция возложена на КШМ машины. Он преобразует энергию и направляет к иным использующим ее системам. В этой статье расскажем из каких деталей состоит кривошипно-шатунный механизм.
Конструктивные особенности КШМ
Кривошип включает элементы, узлы подвижного и неподвижного типа. В число первых входит коленвал, маховик, поршень и поршневые кольца, шатунные элементы.
Статичные компоненты выступают основой конструкции, играют роль фиксаторов и направляющих. В этой категории присутствует блок-картер и его поддон, блок цилиндров, ГБЦ, подшипники и элементы фиксации. Поясним подробнее из чего состоит КШМ и охарактеризуем каждый элемент подробнее.
Подвижная часть КШМ
Шатуны. Обеспечивают сочленение поршней и коленвала. Конструктивно выступают высокопрочной перемычкой из металла. С одной стороны фиксируются к поршню, обратной закрепляется на шейке коленчатого вала. Применение пальцевого механизма соединения позволяет двигаться поршню в единой плоскости с цилиндром. Аналогично фиксация шатуна к коленвалу обеспечивает перемещение последнего в одной плоскости с поршневым соединением.
Коленвал. Это механическое устройство кривошипно-шатунного механизма, преобразующее возвратно-поступательную работу в крутящий момент. Относится к полноопорному, штампованному типу узлов. Его ось направлена на опорные шейки, фланцевое соединение маховика, носок вала. При этом шейки шатунов, наоборот, находятся за осью, поэтому движутся по окружности при вращении.
Конструкция коленвала включает 4 шатунные и 5 коренных шеек, шестерни привода распредвала и противовесы. Чтобы исключить осевое перемещение узел комплектуется полукольцами. На хвостовике и носке расположены самоподвижные сальники из резины. Шатунные шейки обеспечивают дополнительную очистку смазки за счет действия центробежной силы. Процесс идет во внутренних полостях деталей.
Маховик. Узел КШМ двигателя, находится на хвостовике коленвала. Выполнен в виде хорошо сбалансированного массивного диска из чугуна, оснащенного венцом зубчатого типа. Раскручивает коленчатый вал и ЦПГ чтобы исключить замирание поршней в ВМТ. Поэтому некоторая мощность силовой установки тратится на поддержку движения этого узла.
Поддерживает стабильную работу двигателя, накапливает и передает кинетическую энергию, что определяет назначение КШМ. Преодолевает сопротивление сжатию в цилиндрах во время пуска мотора, трогании в подъем. Вращается совместно с коленвалом и в определенной степени смягчает рывковые нагрузки.
Кожух маховика изготовлен из марки серого чугуна. Элемент закрывает пространство картера ДВС сзади. В нижнем сегменте размещен лючок для обслуживания зубчатого венца.
Поршень. В перечень того, что входит в КШМ включается поршень, который заставляет двигаться бензин и дизтопливо. Во время работы нагнетается давление, воздействующее на дно поршня. У современных бензиновых моторов деталь вогнутая, имеющая специальные клапанные проточки. В дизельных ДВС происходит сжатие воздуха, а не бензина. В этом случае вогнутое дно формирует камеру сгорания.
Другой сегмент детали именуется юбкой, которая играет роль направляющей, перемещающейся внутри цилиндра. При этом она никак не касается шатуна. В боковой части поршня размещены специальные пазы под кольца. В верхней половине находятся 2 или 3 компрессионных кольца. Такое устройство КШМ двигателя предотвращает попадание продуктов сгорания в пространство между поршнем и стенками цилиндров. Кольца компенсируют негерметичность стыка за счет соприкосновения с зеркалом. Внизу находится паз для маслосъемного кольца, которое удаляет лишний объем смазки со стенок цилиндров, препятствуя их попаданию в камеру сгорания.
Поршневой палец. Среди основных подвижных деталей КШМ — поршневой палец. Размещается в поршневом гнезде и в верхнем сегменте шатуна. В разных видах конструкции ДВС имеют фиксированное или плавающее крепление. Первый располагается с натяжением, в последнем случае применяются стопорные кольца.
Возможно смещение пальцевой оси относительно вращающейся части цилиндра на величину до 2 мм в бобышках поршня в направлении большей боковой силы. Это исключает сильный шум поршня на холодном моторе.
Чтобы сократить трение и обеспечить смазку контактирующих деталей в поршневой головке кривошипно-шатунного механизма запрессовывается втулка из бронзы. Конструкция разборной кривошипной головки помогает удобно собирать механизм. Элементы филигранно подогнаны фиксируются на контргайки и болты. Нивелировать последствия трения помогают стальные подшипники скольжения, выполненные как вкладыши с замковыми механизмами. Смазка подводится по специальным канавкам.
Препятствует повороту вкладышей сила трения. По этой причине на внешнюю поверхность подшипника не наносится смазка.
Поршневые кольца. Предотвращают разгерметизацию поверхности цилиндра, отводят излишки тепла от головки поршня. Помогают удалить лишний объем смазки с цилиндрового зеркала.
Компрессионные кольца. Выполнены из прочного чугуна, размещаются на поршне в количестве трех единиц. Рабочее покрытие верхнего элемента обработано пористым хлором. Два кольца, расположенные снизу, обработаны оловянным слоем для лучшей приработки к гильзе. Кольца трапецеидального сечения размещаются в направлении днища скошенной стороной.
Маслосъемные кольца. Отличаются прямоугольной формой. Внутри размещены пазы, через которые протекает масло, удаляемое с вертикальных поверхностей цилиндров.
Гильзы цилиндров. Детали КШМ, выступающие в качестве полости для осуществления рабочего цикла. Играют роль направляющих для перемещения поршня. Относятся к категории мокрых деталей. Выпускаются из особых марок чугуна, имеют толстые стенки и перлитную структуру. Внутренняя часть (зеркало цилиндра) проходит закаливание высокочастотным током и шлифуется с показателем микрошероховатости от 0.2 до 0.5 мкм.
Внешняя поверхность гильзы отличается наличием двух поясов, позволяющих зафиксировать деталь в расточках блока цилиндров. На нижнем поясе расположены канавки с сечением в виде прямоугольника. Внутри размещаются уплотнительные кольца из эластомеров. Это исключает просачивание антифриза из охладительной рубашки внутрь блок-картера ДВС.
Неподвижные детали КШМ
Блок цилиндров (БЦ). Главная и наиболее дорогая часть ДВС, составляющая общего устройства КШМ. В нем находятся отверстия цилиндров, где движутся поршни и идет сгорание топлива. Конструктивно выполнен в виде металлического корпуса с цилиндрами, каналами охлаждающей системы, посадочными отверстиями коленвала, распределительного вала. Производится из сплава на основе алюминия или чугуна, для уменьшения веса узла применяются ребра жесткости.
ГБЦ (головка блока цилиндров). Размещается поверх блока цилиндров, оснащается отверстиям под клапаны выпускного/впускного коллектора, фиксирующих элементов для различных узлов силовой установки. По периметру узла располагается прокладка клапанной крышки, последняя закрывает его сверху.
Прокладка БЦ. Предотвращает разгерметизацию пространства между ГБЦ и блоком цилиндров, получила форму пластины. Для производства уплотнителя используется асбостальной материал толщиной 1.4 мм. Отверстия под цилиндры окантованы листовой сталью, жидкостные гнезда получили окантовку из меди. Во время монтажа и фиксации головок принимается во внимание, что размещение прокладки на шпильки допустимо лишь в одной позиции.
Картер ДВС. Одна из главных составляющих устройства КШМ — картер. Это часть корпуса силовой установки размещается ниже блока цилиндров. Между ними находится коленвал. В ходе эксплуатации картер испытывает большие температурные и силовые нагрузки. Чтобы выполнять сложные задачи выпускается из высокопрочных сплавов (чугун, сплавы на основе алюминия с литьем) и обладает повышенной жесткостью.
Внутри него размещаются опоры коленвала, цилиндры, отдельные компоненты механизма ГРМ, элементы системы смазки с разветвленной схемой каналов и дополнительными устройствами. Здесь также расположены балансировочные валы, масляный насос.
Для чего нужен КШМ поясняет конструкция блок-картера. В его верхнем сегменте под прямым углом находятся 2 ряда отверстий с привалочными поверхностями под цилиндровые головки. На поверхностях есть литые гнезда для удаления смазки из ниши клапанного механизма, для перелива жидкости из охлаждающей рубашки в головку цилиндров. Также здесь находятся отверстия, через которые проложены штанги толкателей. Первый ряд устанавливается впереди левого цилиндра на 3.5 см — это объясняется размещение двух шатунов на единую шейку коленвала.
Пространство блок-картера как неподвижной детали КШМ внутри поделено на сегменты перемычками. В каждой части размещаются цилиндры левого и правого рядов.
Как функционирует КШМ
ДВС использует энергию расширения, которая вырабатывается в процессе горения топливной смеси. Назначение кривошипно-шатунного механизма — трансформировать работу движения микроскопических взрывов в максимально удобный формат. Система функционирует следующим образом:
Схема КШМ устроена таким образом, что для пуска силовой установки необходимо в первую очередь раскрутить маховик. Для этого на автомобили устанавливается стартер, сочленяющийся с его зубчатым венцом. Последний раскручивается до момента запуска мотора.
Типичные неполадки
Принцип работы кривошипно-шатунного механизма основан на функционировании в условиях экстремального нагрева, химических и механических перегрузок. Исключить появление неисправностей помогает правильное и своевременное техобслуживание, однако даже такой подход не дает 100% гарантии.
Посторонние стуки в моторе
Возникновение нехарактерных шумов и стуков в двигателе всегда сигнализирует о появлении неисправности. Каждая деталь мотора подогнана с филигранной точностью и стук выступает маркерным признаком износа.
Преждевременный выход из строя связан с неправильным техобслуживанием двигателя. В первую очередь необходимо вовремя менять моторное масло и фильтры, имеющие предельный ресурс. По его завершении значительно теряются рабочие свойства. Попавшие внутрь мотора методично изнашивают тонко подогнанные элементы, приводят к задирам. Дефицит смазки нередко приводит к изнашиванию подшипников, испытывающих значительные нагрузки.
Неисправность деталей кривошипно-шатунного механизма вызывает снижение показателей мощности силовой установки. Кольца перестают корректно функционировать, в камере сгорания присутствует смазка, при этом внутрь мотора проникают отработанные газы. Это явление свидетельствует о холостом использовании энергии, что проявляется в виде значительного ухудшения динамики автомобиля.
Игнорирование проблемы приводит к увеличению сбоев в работе мотора. В запущенных случаях потребуется выполнение капитального ремонта. Состояние двигателя может диагностировать сам водитель, определив уровень компрессии в цилиндрах. В случае несоответствия показателей норме, предусмотренной для конкретного вида ДВС, необходимо проведение ремонта.
Отложения отработанных продуктов
Появление нагара на поршнях, свечах, клапанах — признак неисправности мотора. Неспособность топлива к полному сгоранию требует незамедлительного поиска неполадок. Пассивность владельца может вызвать перегрев ДВС по причине потери теплопроводности.
Если мотор потребляет слишком много масла — это выраженный симптом проблем ЦПГ, не исключено залегание поршневых колец. В таком случае эффективность назначения КШМ двигателя заметно снижается.
Смазка горит вместе с бензином, дизтопливом, что проявляется в виде черного выхлопа. Внутри резервуара для горючей смеси растет температура, превышая допустимые значения. Иногда спасает очистка без снятия мотора, однако в основном необходимо выполнение дефектовки силовой установки.
Белый оттенок отработанных газов указывает на проникновение охлаждающей жидкости в камеру сгорания. Частая причина неисправности — износ, повреждение прокладки ГБЦ либо небольшие трещины в рубашке охлаждающего контура. Чтобы устранить протечку необходима замена рубашки.
Промедление опасно, так как существует риск гидроудара. Внутри камеры сгорания скапливается охлаждающая жидкость, поршень движется в верхнее положение, однако жидкость по сравнению с воздухом не сжимается. В итоге возникает удар о прочную поверхность. Его последствия бывают различными. Наиболее критичная ситуация — заклинивание силовой установки. Поршневая система пробивает стенку БЦ. Происходит разрушение шатунного элемента на большой скорости и в силовой установке появляется отверстие большого диаметра. От такой катастрофы иногда не спасает и капремонт — приходится приобретать новый ДВС.
По маркам авто
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 5 февраля 2023 года; проверки требуют 9 правок.
Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Начиная с середины XX века — наиболее распространённая разновидность поршневого ДВС, особенно в двигателях средней и небольшой мощности (тяжелые двигатели ради высокой удельной мощности выполняются двухтактными).
Четырёхтактный двигатель впервые был запатентован Алфоном де Роше в 1861 году. До этого около 1854—1857 годов два итальянца (Евгенио Барсанти и Феличе Матоцци) изобрели двигатель, который, по имеющейся информации, мог быть очень похож на четырёхтактный двигатель, однако тот патент был утерян.
Первым человеком, построившим первый практически используемый четырёхтактный двигатель, был немецкий инженер Николаус Отто. Поэтому четырёхтактный цикл известен как цикл Отто, а четырёхтактный двигатель, использующий свечи зажигания, называется двигателем Отто.
Общие принципы 4-тактного цикла
Работа четырёхтактного двигателя в разрезе. Цифрами обозначены такты
Рабочий цикл четырёхтактного двигателя состоит из четырех тактов, каждый из которых представляет один ход поршня между мертвыми точками, при этом двигатель проходит следующие фазы:
В конце такта сжатия происходит зажигание заряда в двигателях Отто или начало впрыска топлива в двигателях Дизеля.
Круговая диаграмма фаз работы 4-тактного двигателя с искровым зажиганием (например, бензинового) 1=верхняя мёртвая точка 2=нижняя мёртвая точка A: фаза впуска B: фаза сжатия C: фаза рабочего хода D: фаза выпуска
Рабочий процесс дизельного двигателя отличается от описанного выше тем, что заряд в камере сгорания — чистый воздух, нагретый от сжатия до температуры воспламенения. За некоторое время до ВМТ, называемое временем инициации, в камеру сгорания начинает впрыскиваться жидкое топливо, распыленное до капель, каждая из которых подвергается инициации, то есть нагревается, испаряясь с поверхности, при испарении вокруг каждой из капель образуется и воспламеняется в горячем воздухе горючая смесь. Время инициации для каждого дизеля стабильно, зависит от особенностей конструкции и изменяется только с его изнашиванием, поэтому, в отличие от момента зажигания, момент впрыска в дизеле задается раз и навсегда при его конструировании и изготовлении. Так как смесь во всем объёме камеры сгорания в дизеле не образуется, а факел распыла форсунки занимает небольшой объём камеры, количество воздуха на каждый объём впрыснутого топлива должно быть избыточным, в противном случае процесс горения протекает не до конца, а выхлопные газы содержат большое количество недогоревшего углерода в виде сажи. Само горение длится столько времени, сколько длится впрыскивание данной конкретной порции топлива — от нескольких градусов после ВМТ на холостом ходу до 45-50° на режимах полной мощности. В мощных дизелях цилиндр может снабжаться несколькими форсунками.
Конструктивная специфика 4-тактного двигателя
Газораспределительный механизм (далее — ГРМ) является неотъемлемым элементом конструкции любого 4-тактного двигателя. Общего вида не имеет. Может быть клапанным или гильзовым. В любом случае, независимо от своей конструкции, отвечает за фазы газорапределения (газообмен при смене тактов).
ГРМ клапанного типа
Основой ГРМ данного типа являются тарельчатые клапана. В общем случае состоит из: распределительного кулачкового вала с механическим приводом от коленчатого вала и передаточным отношением 2:1 (один оборот распредвала на два оборота коленвала); тарельчатых клапанов с механическим приводом от кулачков распредвала; некоего механизма передачи поступательного движения на клапаны от кулачков распредвала для открытия клапанов; некоего устройства возврата клапанов в закрытое положение.
Может быть выполнен по нетрадиционным схемам: посредством гидрообъёмного привода или посредством электрического привода.
ГРМ гильзового типа
Основой ГРМ данного типа являются золотниковые клапаны. В общем случае состоит из: цилиндрических гильзовых золотников; механического привода вращения или возвратно-поступательного движения золотников от коленвала двигателя.
Специфика системы смазки и охлаждения
Работа ДВС сопровождается выделением значительного количества теплоты из-за высоких температур рабочих газов и существенных контактных напряжений в трущихся деталях. Поэтому для обеспечения работы двигателя детали, образующие пары трения, необходимо охлаждать и смазывать, а из зазоров между ними вымывать продукты механического износа. Смазывающее масло, помимо обеспечения масляного клина в зазорах, отводит значительное количество тепла от нагруженных трущихся поверхностей. Для охлаждения гильз цилиндров и элементов головки двигателя дополнительно используется система принудительного охлаждения, которая может быть жидкостной и воздушной.
Система смазки двигателя состоит из ёмкости с маслом, в таком качестве часто используется поддон картера — в системе с масляным картером или отдельный масляный бак — в системе с сухим картером. Из ёмкости масло засасывается масляным насосом, шестерёнчатым или, реже, коловратным, и по каналам поступает под давлением к пáрам трения. В системе с масляным картером гильзы цилиндров и некоторые второстепенные детали смазываются разбрызгиванием, системы с сухим картером предусматривают наличие специальных лубрикаторов, обеспечивающих смазку и охлаждение этих же деталей. В двигателях средней и большой мощности в систему смазки включаются элементы масляного охлаждения поршней в виде залитых в донышки змеевиков или специальных форсунок, обливающих днище поршня со стороны картера. Как правило, система смазки содержит один или несколько фильтров для очистки масла от продуктов износа пар трения и осмоления собственно масла. Фильтры используются либо с картонной шторкой с определённой степенью пористости, либо центробежные. Для охлаждения масла часто применяют воздушно-масляные радиаторы или водомасляные теплообменники.
Система воздушного охлаждения в простейшем случае представлена просто массивным оребрением цилиндров и головок. Набегающий поток воздуха снаружи и масло изнутри охлаждает двигатель. Если обеспечить теплоотвод набегающим потоком невозможно, в систему включается вентилятор с воздуховодами. Наряду с таким неоспоримыми достоинствами, как простота двигателя и относительно высокая живучесть в неблагоприятных условиях, а также относительно меньшая масса, воздушное охлаждение имеет серьёзные недостатки:
— большое количество воздуха, продувающего двигатель, несёт большое количество пыли, которая оседает на оребрении, особенно при подтекании масла, неизбежном в эксплуатации, в результате эффективность охлаждения резко снижается;
— невысокая теплоёмкость воздуха заставляет продувать через двигатель существенные его объёмы, для чего требуется существенный отбор мощности для работы вентилятора охлаждения;
— форма деталей двигателя плохо соответствует условиям хорошего обтекания воздушным потоком, в связи с чем добиться равномерного охлаждения элементов двигателя очень трудно; из-за разницы рабочих температур в отдельных элементах конструкции возможны большие термические напряжения, что снижает долговечность конструкции.
Поэтому воздушное охлаждение применяется в ДВС нечасто и, как правило, либо на дешевых конструкциях, либо в тех случаях, когда работа двигателя протекает в особых условиях. Так, на транспортёре переднего края ЗАЗ-967 используется двигатель с воздушным охлаждением МеМЗ-968, отсутствие водяной рубашки, рукавов и радиатора охлаждения повышает живучесть транспортёра в условиях поля боя.
Жидкостное охлаждение имеет ряд преимуществ и применяется на ДВС в большинстве случаев.
Преимущества:
— высокая теплоёмкость жидкости способствует быстрому и эффективному отводу тепла из зон теплообразования;
— гораздо более равномерное теплораспределение в элементах конструкции двигателя, что существенно снижает тепловые напряжения;
— использование жидкостного охлаждения позволяет быстро и эффективно регулировать поток тепла в системе охлаждения и, стало быть, быстрее и гораздо равномернее, чем в случае с воздушным охлаждением, прогревать двигатель до температур рабочего диапазона;
— жидкостное охлаждение позволяет увеличивать как линейные размеры деталей двигателя, так и его теплонапряжённость за счёт высокой эффективности теплоотведения; поэтому все средние и крупные двигатели имеют жидкостное охлаждение, за исключением ПДП-двухтактных двигателей, у которых зона продувочных окон гильз охлаждается продувочным воздухом из соображений компоновки;
— специальная форма водо-воздушного или водо-водяного теплообменника позволяет максимально эффективно передавать тепло двигателя в окружающую среду.
Недостатки водяного охлаждения:
— повышение веса и сложность конструкции двигателя из-за наличия водяной рубашки;
— наличие теплообменника/радиатора;
— снижение надёжности агрегата из-за наличия стыков рукавов, шлангов и патрубков с возможными течами жидкости;
— обязательное прекращение работы двигателя при потере хотя бы части охлаждающей жидкости.
Современные системы жидкостного охлаждения используют в качестве теплоносителя специальные антифризы, не замерзающие при низких температурах и содержащие пакеты присадок разного назначения — ингибиторы коррозии, моющие, смазывающие, антипенные, а иногда и герметизирующие места возможных течей. С целью повышения КПД двигателя системы герметизируют, при этом повышая рабочий диапазон температур к области кипения воды. Такие системы охлаждения работают при давлении выше атмосферного, их элементы рассчитаны на поддержание повышенного давления. Этиленгликолевые антифризы имеют высокий коэффициент объёмного расширения. Поэтому в таких системах часто применяются отдельные расширительные бачки или радиаторы с увеличенными верхними бачками.
С целью стабилизации рабочей температуры и для ускорения прогрева двигателя в системы охлаждения устанавливают термостаты. Для воздушного охлаждения термостат — сильфон, заполненный церезином или этиловым спиртом в сочетании с обоймой и системой рычагов, поворачивающих заслонки, обеспечивающие переключение и распределение воздушных потоков. В системах жидкостного охлаждения точно такой же термоэлемент осуществляет открытие клапана или переключение системы клапанов, направляющих жидкость либо в радиатор, либо в специальный канал, обеспечивающий циркуляцию нагреваемой жидкости и равномерное прогревание двигателя.
Радиатор или теплообменник охлаждения имеет вентилятор, продувающий через него поток атмосферного воздуха, с гидростатическим или электрическим приводом.
Двигатели Отто имеют термический КПД около 40 %, что с механическими потерями дает фактический КПД от 25 до 33%.
Современные двигатели могут иметь уменьшенный КПД для удовлетворения высоких экологических требований.
КПД ДВС можно повысить с помощью современных систем процессорного управления топливоподачей, зажиганием и фазами газораспределения. Степень сжатия современных двигателей, как правило, имеет значения, близкие к предельным (спорный момент, см. Цикл Миллера).
Факторы, влияющие на мощность двигателя
Мощность поршневого двигателя зависит от объёма цилиндров, объёмным КПД, потерь энергии — газодинамических, тепловых и механических, степени сжатия топливо-воздушной смеси, содержания кислорода в воздухе и частоты вращения. Мощность двигателя зависит также от пропускной способности трактов всасывания и выхлопа, а значит, от их проходных сечений, длины и конфигурации каналов, а также от диаметров клапанов, больше впускных. Это справедливо для любых поршневых двигателей. Максимальный момент ДВС достигается при наивысшем наполнении цилиндров. Частота вращения коленвала в конечном счёте ограничена прочностью материалов и свойствами смазки. Клапана, поршни и коленчатые валы испытывают больши́е динамические нагрузки. На высоких оборотах двигателя могут происходить физические повреждения поршневых колец, механический контакт клапанов с поршнями, что приводит к разрушению двигателя. Поршневые кольца вертикально колеблются в канавках поршней. Эти колебания ухудшают уплотнение между поршнем и гильзой, что приводит к потере компрессии, падении мощности и КПД в целом. Если коленвал вращается слишком быстро, клапанные пружины не успевают достаточно быстро закрывать клапана. Это может привести к контакту поршней с клапанами и вызывать серьёзные повреждения, поэтому на скоростных спортивных двигателях используют привод клапанов без возвратных пружин. Так, «Даймлер-Бенц» серийно выпускает моторы с десмодромным управлением клапанами (с двойными кулачками, один открывает клапан, другой прижимает его к седлу), БМВ использует электромагнитное управление клапанами. На высоких скоростях ухудшаются условия работы смазки во всех парах трения.
Совокупно с потерями на преодоление инерции возвратно-поступательно движущихся элементов ЦПГ, это ограничивает среднюю скорость поршней большинства серийных двигателей 10 м/с.
Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными. Они находят самое широкое применение в качестве первичных двигателей на стационарных и транспортных энергоустановках.
Как правило, четырёхтактные двигатели используются в тех случаях, когда имеется возможность более или менее широко варьировать соотношение оборотов вала со снимаемой мощностью и крутящим моментом либо тогда, когда это соотношение не играет роли при работе машины. Например, двигатель, нагруженный электрогенератором, в принципе может иметь любую рабочую характеристику и согласуется с нагрузкой только по рабочему диапазону оборотов, которые в принципе могут быть любыми, приемлемыми для генератора. Использование промежуточных передач вообще делает четырёхтактный двигатель более адаптированным к нагрузкам в самых широких пределах. Они же являются более предпочтительными в тех случаях, когда установка длительное время работает вне установившегося режима — благодаря более совершенной газодинамике их работа в переходных режимах и режимах со снятием частичной мощности оказывается более устойчивой.
При работе на вал в заданном диапазоне оборотов, особенно тихоходный (гребной вал теплохода), предпочтительнее использование двухтактных двигателей, как имеющих более выгодные массово-мощностные характеристики на низких оборотах.