Ионисторы на замену аккумуляторным батареям | 2 Схемы

Схемы питания на основе суперконденсаторов

В некоторых схемах ценным преимуществом является возможность поддерживать питание процессора и ключевых компонентов, например, после сбоя электросети, чтобы должным образом завершить работу операционной системы, сохранить наиболее важные данные в памяти или восстановить информацию из энергозависимой памяти после того, как питание вернется в норму.

Не всегда необходимо и выгодно запитывать все устройство – обычно достаточно подать напряжение на процессор на короткий период времени вместе с любыми внешними запоминающими устройствами, необходимыми для завершения процедуры управляемого выключения. Из инженерной практики известно, что данные операционной системы хранятся на картах microSD миникомпьютеров (например Raspberry Pi), и повреждаются при внезапном отключении питания в неудачный момент.

В некоторых случаях можно эффективно использовать энергию запасенную в классических электролитических конденсаторах, фильтрующих источник питания. Но если для выполнения процедуры требуется большее количество энергии – стоит обратиться к суперконденсатору, работающему в режиме буферного питания.

Ионисторы на замену аккумуляторным батареям
Принцип работы системы резервного питания с использованием суперконденсаторов

Принцип работы системы резервного питания с использованием суперконденсаторов показан на рисунке выше. После отключения основного блока питания, последовательно включенные суперконденсаторы отправляют энергию на потребитель через преобразователь. Дополнительные резисторы – за счет снижения эффективности схемы из-за потерь энергии – уравновешивают напряжение, предотвращая поломку одного из конденсаторов.

Такая простая схема, хотя и хорошо известная из инженерной практики по применению свинцово-кислотных аккумуляторов, не будет работать в большинстве реальных проектных ситуаций – основная проблема будет заключаться в сильном импульсе тока, который появляется при зарядке суперконденсатора сразу после включение питания устройства. Поэтому должны быть предусмотрены соответствующие меры по исправлению положения.

Ионисторы на замену аккумуляторным батареям
Схема для устранения проблемы сильного импульса тока, возникающего при зарядке суперконденсатора

Одно из самых простых практических приложений для устранения этой проблемы показано на рисунке. Резистор R используется для ограничения зарядного тока.

Диод Шоттки защищает схему от обратных токов, благодаря чему зарядка конденсатора возможна только через резистор. Схема адаптирована для питания от источников постоянного напряжения с напряжением, превышающим как минимум на 0,3 В напряжение поддержки, необходимое для правильной работы процессора.

Ионисторы на замену аккумуляторным батареям
Универсальное применение схемы резервного питания с использованием суперконденсаторов

Гораздо лучшим и более универсальным решением является схема питания, показанная на рисунке выше. Дополнительный диод Шоттки, подключенный последовательно с резистором R, предотвращает разряд ионистора от основного источника питания или других блоков устройства.

Полевой транзистор позволяет программно выбрать источник напряжения – в состоянии проводимости он обеспечивает путь с низким сопротивлением, который соединяет выводы питания процессора с основным источником питания устройства, и отключение (после обнаружения падения напряжения) позволяет начать разрядку суперконденсатора после перевода микроконтроллера в режим пониженного энергопотребления (STOP).

Стоит обратить внимание на то, что большой ошибкой может быть попытка использовать суперконденсатор вместо никель-металлгидридной аккумуляторной батареи для поддержания часов RTC и памяти RAM. Это решение будет работать только в тех устройствах, которые во время нормальной работы постоянно или большую часть времени подключены к другому источнику питания (например часы с питанием от сети).

Следует помнить, что суперконденсаторы характеризуются относительно высокими токами саморазряда, а значит время поддержки ионистором RTC или RAM памяти будет во много раз меньше, чем в случае даже небольшой литиевой батареи или никель-металлогидридного АКБ.

Аккумуляторы – краткий обзор технологии

Сейчас на рынке электронных компонентов можно найти широкий ассортимент аккумуляторов, различающихся как технологией изготовления, так и размерами, способом монтажа, емкостью, напряжением, выходом по току или сопротивлению, условиям рабочей среды. Часто выбор источника питания для конкретного применения определяется не только основными техническими параметрами, но и соответствующими сертификатами безопасности, которые определяют использование батареи в данном устройстве – медицинские устройства будут здесь прекрасным примером.

Аккумуляторы NiCd (никель-кадмиевые) – одно из старых поколений аккумуляторов, обычно встречающиеся в виде ячеек R6 (AA) или R03 (AAA). В настоящее время использование этих батарей прекращается из-за токсичности кадмия и проблем с утилизацией.

NiMH аккумуляторы (никель-металлогидридные) – более эффективны, чем NiCd, и по-прежнему пользуются особой популярностью в сегменте небольших аккумуляторов типоразмеров (R03, R6, R14, R20, а также 6F22). В связи с популяризацией никель-металлгидридных элементов и корпусов и падением цен это решение, оно заменило никель-кадмиевые батареи.

Хорошим примером выступают эффективные АКБ Eneloop, часто используемые в профессиональных устройствах (например при питании фотовспышек, требующих высокой емкости и эффективности по току, а также устойчивости к большим колебаниям окружающей температуры).

NiMH аккумуляторы также доступны в миниатюрных версиях, а также различных типов корпусов (часто предназначенные для монтажа непосредственно на печатной плате). Во многих коммерческих устройствах можно найти использование небольших перезаряжаемых батарей этого типа в качестве источника питания для поддержания энергозависимой памяти и / или работы часов реального времени (RTC).

АккумуляторыLi-Ion (литий-ионные) – наиболее распространенный сегодня тип аккумуляторов, особенно в мобильных устройствах, ноутбуках, радиоуправляемых моделях, квадрокоптерах, медицинских устройствах, фонариках и многом другом.

Батареи этого типа отличаются большой емкостью, высоким выходом по току и высокой плотностью энергии, а также позволяют достаточно быстро перезаряжаться. В отличие от щелочных батарей, литий-ионные источники электроэнергии требуют строго контролируемых рабочих параметров, в частности процесса зарядки – хорошо известны самовоспламенение и взрывы литий-ионных аккумуляторов в результате производственных дефектов или неисправности зарядных устройств.

Аккумуляторы Li-Po (литий-полимерные) – также часто используемые в бытовой электронике (например, в планшетах или фитнес браслетах) и в авиамоделировании. Они более безопасные (хотя и требуют использования как встроенных, так и внешних устройств защиты) и легче, чем литий-ионные батареи, обеспечивают возможность очень быстрой зарядки и бывают разных размеров.

Аккумуляторы LiFePO4 (литий-железо-фосфатные) – еще одна подгруппа аккумуляторов с химической структурой на основе лития, набирающая все большую популярность в требовательных схемах электропитания электромобилей, электроинструментов и накопителей энергии.

Необслуживаемые батареи – в эту группу входят свинцово-кислотные батареи нового поколения, в которых жидкий электролит (ранее требовавший периодического, ручного пополнения и контроля уровня) был заменен электролитом в виде геля (гелевые батареи) или закрываются в специальных отсеках из стекломата (аккумуляторы AGM).

Продукты из этой группы обладают высокой емкостью, но при этом удельная энергия довольно низкая. Даже самые маленькие необслуживаемые батареи во много раз тяжелее, чем литий-ионные или никель-металлгидридные АКБ, аналогичные по емкости и напряжению.

Взаимодействие суперконденсаторов с акб

Обсуждая тему суперконденсаторов и аккумуляторов, заметим еще один важный пример сотрудничества между обоими типами источников энергии. С помощью компаратора, ОУ и LDO стабилизатора, можно построить схему активного напряжения компенсации падения на внутреннее сопротивление основного источника питания (батареи) – пример такой схемы показан на рисунке далее.

Ионисторы на замену аккумуляторным батареям
Активная компенсация падения напряжения на внутреннем сопротивлении основного источника питания

Конденсаторы заряжаются от источника тока на базе усилителя MAX406, взаимодействующего с шунтирующим резистором R6 (в дифференциальном режиме) и выходным транзистором P1. Компаратор MAX985 постоянно проверяет напряжение на конденсаторах и шине питания устройства, при необходимости открывая транзистор P2, так что суперконденсаторы подключаются параллельно к батарее, поддерживая ее работу и предотвращая переходное падение напряжения при приложении большой нагрузки.

Ионисторы на замену аккумуляторным батареям
Канал 1 – напряжение аккумулятора, канал 2 – выходное напряжение, канал 3 – напряжение на плюсовом выводе «верхнего» суперконденсатора

Эффекты работы системы показаны на рисунке (канал 1 – напряжение аккумулятора, канал 2 – выходное напряжение, канал 3 – напряжение на плюсовом выводе «верхнего» суперконденсатора).

Встроенные контроллеры ионисторов

Использование стандартного встроенного контроллера заряда / разряда – хороший выбор для более требовательных приложений с суперконденсаторами. В настоящее время на рынке появляется все больше продуктов этого типа – каждый из них предлагает несколько иной набор функций и параметров, что позволяет адаптировать силовые цепи к конкретным требованиям приложения.

Ионисторы на замену аккумуляторным батареям
Схема применения контроллера MAX38888, действующего как «реверсивный» преобразователь постоянного тока

Рассмотрим микросхему MAX38888. Это обратимый преобразователь постоянного тока в постоянный, позволяющий просто реализовать функции управления потоком энергии между суперконденсатором и основным источником питания (батареями или аккумулятором). Схема позволяет заряжать суперконденсатор током до 500 мА, а после потери основного источника питания (после извлечения аккумулятора) позволяет запитывать системную часть (шину питания основного устройства) током до 2,5 А. Схема включения контроллера MAX38888 показана на рисунке.

Сейчас читают:  Renault Logan. Не работает левая сторона поворотников - Автоэлектрик Expert
Ионисторы на замену аккумуляторным батареям
Схема применения микросхемы LTC4041 с двумя суперконденсаторами

Другой пример специализированного контроллера суперконденсатора – микросхема LTC4041. Встроенный активный балансировщик обеспечивает прямое подключение двух последовательных суперконденсаторов к контроллеру. Один и тот же блок понижающего / повышающего преобразователя постоянного тока может работать в двух направлениях, поддерживая как зарядку суперконденсатора, так и разряд на нагрузку.

В схемах требующих более высоких рабочих напряжений, можно использовать расширенный контроллер серии LTC3350. Система обеспечивает последовательное соединение до четырех суперконденсаторов, предлагает функцию активного балансира, двунаправленный понижающий / повышающий преобразователь и ряд уникальных функций, в том числе 14-битный преобразователь АЦП для контроля напряжений, токов, емкости и так далее.

Ионисторы на замену аккумуляторным батареям
Схема применения расширенного контроллера серии LTC3350, разработанного для систем, требующих высоких рабочих напряжений

ON Semiconductor подготовила интересное предложение для разработчиков, работающих над фотовспышками и другими приборами, требующими подачи сильных импульсов тока (до 4 А) на мощные светодиоды. CAT3224 – это специализированный контроллер ионистора, который также предлагает два высокопроизводительных встроенных источника тока и активный балансировщик для подключения двух суперконденсаторов.

Ионисторы на замену аккумуляторным батареям
Схема на базе микросхемы CAT3224, которая позволяет подавать сильные импульсы тока на мощные светодиоды

Представленное решение является еще одним примером отличного взаимодействия между батареями (в данном случае рекомендуются литий-ионные) и суперконденсаторами.

Выбор преобразователя для ионистора

Давайте подумаем о соответствующем выборе DC / DC преобразователя, который будет работать с суперконденсаторами. Среди всех важных параметров, особое внимание следует уделить трем из них:

Ионисторы на замену аккумуляторным батареям
Принципиальная схема MCP1640, способной работать при входном напряжении в диапазоне от 0,65 В

Диапазон входного напряжения – предполагая, что целью использования преобразователя является восстановление как можно большего количества энергии хранящейся в суперконденсаторе (а не только для повышения напряжения на короткое время, например, для сохранения данных в энергонезависимой памяти), важен подбор схемы с максимально широким диапазоном напряжений с минимально возможным пусковым напряжением.

На рынке существует множество миниатюрных преобразователей, отвечающих этому требованию – в качестве примера приведем семейство Microchip MCP1640, способные работать при стартовом входном напряжении в диапазоне от 0,65 В. Базовая схема показана на рисунке.

Еще одним заслуживающим внимания примером является схема LM2621 – при токе питания 80 мкА она может обеспечивать питание выходного устройства с током до 1 А, что позволяет использовать её в устройствах, требующих большей мощности (в этом случае понадобится суперконденсатор большой емкости или батарея нескольких меньших, соединенных параллельно).

КПД – высокий коэффициент преобразователя позволяет максимально полно использовать относительно небольшое количество энергии, хранящейся в суперконденсаторе. Но стоит иметь в виду, что во многих приложениях – в частности, в сегменте сверхнизкого энергопотребления – значение тока источника питания, потребляемого самим преобразователем, оказывается гораздо более важным, поскольку именно этот параметр становится основной потерь энергии, вносимых преобразователем для схемы с низким энергопотреблением.

Контроль (линия EN / SHDN) – стоит обратить внимание на возможность отключения инвертора при нормальной работе устройства, что снизит общее энергопотребление и позволит быстрее заряжать суперконденсатор после того как накопленный в нем заряд использован.

В настоящее время подавляющее большинство интегрированных контроллеров DC / DC имеют линию включения. Энергосбережение особенно полезно в устройствах, основным источником питания которых являются батареи или аккумулятор – например, контроллер MCP1640 потребляет всего 1 мкА в выключенном состоянии.

Ионистор вместо аккумулятора — порядок сборки батареи

В данном обзоре я буду собирать накопитель энергии с применением восьми конденсаторов, включенных по встречно-параллельной схеме. В принципе будет организованно четыре пары по две емкости включенных параллельно, а пары в свою очередь соединены последовательно.

Эмалированный провод нужно выровнять и убрать с него лак. Выполняется это с помощью рабочего ножа или специального инструмента для зачистки проводов ( у кого он имеется).

Формируем медный провод в соединительные шины

Необходимо изготовить три квадратных элемента и пару полюсов для клемм « » и «-«

К сформированным изделиям для контактов припаиваем гайки, к которым будут подключаться провода питания.

Залуживаем места соединения квадратов.

Соединяем емкости в батарею, припаиваем проводники к выводам конденсатора, соблюдая при этом полярность.

Вначале нужно собрать четыре группы.

Теперь припаиваем шины для подключения проводов питания.

На этом этапе нужно зарядить батарею током 5А.

По истечению пяти минут накопитель будет полностью заряжен.

Делаем испытательный тест лампой накаливания.

Делаем короткое замыкание выходных контактов — провод разогрелся до красного состояния.

Испытываем батарею подключением электромотора.

Ионистор своими руками

Для изготовления суперконденсатора в домашних условиях понадобятся:

  • фольга из пачки сигарет (диэлектрик);
  • таблетки активированного угля (электрод);
  • водорастворимый акриловый лак или клей ПВА (электролит).

Изготовить самодельный ионистор можно следующим образом:

  1. Из фольги вырезают 2 прямоугольника.
  2. Таблетки угля размалывают в ступке до состояния мелкого порошка. Это можно сделать и в кофемолке.
  3. Угольный порошок перемешивают с акриловым лаком.
  4. Полученную смесь наносят кисточкой на один из отрезков фольги.
  5. После просушки наносят второй угольный слой, затем процесс повторяют.
  6. Используя клей ПВА, приклеивают второй прямоугольник из фольги. Суперконденсатор готов.
  7. Подсоединив проводки к двум противоположным сторонам изделия, можно зарядить ионистор с помощью любой батарейки.

Ионисторы на замену аккумуляторным батареям | 2 Схемы

Научно-технический прогресс в создании совершенных источников электроэнергии ни на секунду не замирает. В скором будущем будут созданы высоковольтные суперконденсаторы высокого качества, которые сделают технологический переворот практически во всех сферах деятельности человечества.

Ионисторы и акб – сравнение параметров

Принимая решение о выборе суперконденсатора или аккумулятора для проектируемого устройства, надо учитывать ряд ключевых технических параметров.

Скорость зарядки – несомненным преимуществом суперконденсаторов является очень короткое время зарядки, зависящее от емкости и установленного ограничения тока – в случае меньшей емкости обычно не возникает проблем с получением времени зарядки от долей секунды до несколько секунд.

Плотность энергии – этот параметр, выражаемый в единицах энергии на килограмм массы данного источника (обычно [Втч / кг]) для суперконденсаторов во много раз ниже, чем для любого типа аккумулятора. То есть для накопления того же количества энергии, что и в батарее (например, в литий-ионной), потребуется использование гораздо большего по размерам и более тяжелого суперконденсатора.

Плотность мощности – параметр, выражаемый в единицах мощности на килограмм массы источника [Вт / кг], намного выше для суперконденсаторов, чем для обычных электрохимических батарей. Высокое значение плотности мощности означает, что даже небольшой суперконденсатор способен подавать относительно высокий ток на потребитель – это связано с очень низким сопротивлением ESR. Сравнение различных типов источников тока в плане энергии и удельной мощности показано на рисунке.

Ионисторы на замену аккумуляторным батареям
Сравнение различных типов источников энергии на плоскости энергии и плотности мощности

Срок службы – суперконденсаторы имеют гораздо более длительный срок службы, чем обычные электролитические конденсаторы – и хотя они также подвергаются неизбежным процессам старения, количество циклов заряда в течение гарантированного срока службы практически неограничено (особенно в небольших моделях EDLC, предназначенных для монтажа на печатной плате).

Номинальное напряжение – самым большим недостатком суперконденсаторов является низкое рабочее напряжение – в большинстве случаев оно не превышает значения 2,8 – 5,5 В. Это ограничение связано с внутренней структурой – материала и электролита.

Если в случае аккумуляторов последовательное соединение отдельных ячеек в блоки является классическим методом увеличения выходного напряжения, то в суперконденсаторах это связано с резким уменьшением эквивалентной емкости, более того – часто требует использования выравнивания напряжений, чтобы предотвратить повреждение одного из них из-за слишком большой разницы в емкостях (что неизбежно при довольно большом производственном допуске).

Диапазон рабочих температур – некоторые суперконденсаторы адаптированы для работы в широком диапазоне температур окружающей среды. В то время как большинство аккумуляторных батарей имеют значительно заниженную эффективную емкость при низких температурах, суперконденсаторы могут работать даже в морозах до -40 ° C. Большинство ионисторов также хорошо справляются с повышенными температурами окружающей среды, вплоть до 85 ° C.

Цена – современные суперконденсаторы по-прежнему относительно дороги в производстве, а это означает что использование перезаряжаемых или одноразовых батарей может оказаться экономической необходимостью. Стоимость резко возрастает, особенно на миниатюрные конденсаторы для сборки SMD с очень большой емкостью.

Ионисторы на замену аккумуляторным батареям
Типичная разрядная характеристика суперконденсатора

Характеристики разряда – одним из наиболее важных различий между батареями и конденсаторами является форма их характеристик разряда по напряжению. В случае батарей напряжение медленно падает в течение длительного периода времени до тех пор, пока не будет достигнут определенный критический диапазон, выше которого происходит резкое падение, ведущее к глубокой разрядке – если устройство не отключится раньше.

Примеры характерных форм для популярных типов батарей показаны на рисунке. Для суперконденсаторов характеристика разряда изначально нелинейная, потому что падение напряжения на сопротивлении ESR, которое изменяется со временем, накладывается на постепенное изменение напряжения, что вызвано уменьшением количества электрического заряда, накопленного в конденсаторе.

Сейчас читают:  Мое устройство OBD2 не соединяется с ЭБУ, что делать?
Ионисторы на замену аккумуляторным батареям
Примеры форм разрядных характеристик для популярных типов аккумуляторов

Ионисторы, суперконденсаторы, ультраконденсаторы — история создания и развития технологии

7 июня 1962 года, Роберт Райтмаер, химик американской компании Standard Oil Company (SOHIO), располагавшейся в городе Кливленд, штата Огайо, подал заявку на получение патента, где подробно описывался механизм сохранения электрической энергии в конденсаторе, обладающем «двойным электрическим слоем».

Если в обычном конденсаторе алюминиевые обкладки, традиционно, были изолированы слоем диэлектрика, то в предлагаемом изобретателем варианте акцент делался непосредственно на материал обкладок. Электроды должны были иметь различную проводимость: один электрод должен был обладать ионной проводимостью, а другой – электронной.

Таким образом, в процессе заряда конденсатора происходило бы разделение электронов и положительных центров в электронном проводнике, и разделение катионов и анионов в ионном проводнике. Электронный проводник предлагалось сделать из пористого углерода, тогда ионным проводником мог бы быть водный раствор серной кислоты.

Заряд в таком случае сохранялся бы на границе раздела этих особых проводников (тот самый двойной слой). Разность потенциалов этих первых ионисторов могла достигать значения в 1 вольт, а емкость – единиц фарад, ведь теперь расстояние между обкладками было меньше 5 нанометров.

   В 1971 году лицензия была передана японской компании NEC, занимающейся к тому моменту всеми направлениями электронной коммуникации. Японцам удалось успешно продвинуть технологию на рынок электроники под названием «Суперконденсатор».

Спустя семь лет, в 1978 году, компания Panasonic, в свою очередь, выпустила «Золотой конденсатор» («Gold Cap»), так же завоевавший успех на этом рынке. Успех был обеспечен удобством применения ионисторов для питания энергозависимой памяти SRAM. Однако эти ионисторы обладали высоким внутренним сопротивлением, которое ограничивало возможность быстрого извлечения энергии, а значит, сильно сужала диапазон сфер применения.

История создания

Первый конденсатор с двойным слоем на пористых угольных электродах был запатентован в 1957 году фирмой General Electric. Так как точный механизм к тому моменту времени не был ясен, было предположено, что энергия запасается в порах на электродах, что и приводит к образованию «исключительно высокой способности накопления заряда».

Столкнувшись с фактом небольшого объёма продаж, в 1971 году SOHIO передала лицензию фирме NEC, которой удалось удачно продвинуть изделие на рынке под названием «Supercapacitor» (Суперконденсатор). В 1978 году фирма Panasonic выпустила на рынок «Золотой конденсатор» («Gold capacitor», «Gold Cap»), работающий на том же принципе.

Ионисторы в СССР были анонсированы в журнале «Радио» № 5 в 1978 году. Это были ионисторы КИ1-1 и они имели ёмкость от 0,1 до 50 Ф в зависимости от типоразмера.

Первые ионисторы с малым внутренним сопротивлением для применения в мощных схемах были разработаны фирмой PRI в 1982 году. На рынке эти ионисторы появились под названием «PRI Ultracapacitor».

Как заменить

Заменить АКБ как стартовое устройство, реально. Берем суперконденсаторы БУ Maxwell 1200F. Сборка из 6 штук по 200 фарад каждый, 2,7 вольт на один конденсатор.

Общий вольтаж системы — 16,2 вольт.

Технические характеристики:

  1. Срок службы около от 10 лет гарантированно.
  2. Миллион циклов перезарядки.
  3. Ток максимальный — 930 А.
  4. Температура работы от -45 до 65 градусов.

За сутки напряжение на заряженном устройстве снижается с 14,7 вольт до 12,3 вольт. Потом разряжается все медленнее и через 6 месяцев остается 9 вольт.

При установке на Хонду Фит одного такого устройства без аккумулятора, заряженного до 14,5 вольт, конденсатора хватает на 3 ч. После этого напряжение падает до 11,5 единиц. Если установить автозапуск по падению напряжения, автомобиль автоматически запустится и генератор зарядит конденсатор.

Гибридная связка менее мощного аккумулятора с конденсаторной сборкой будет крутить стартер бодрее при низких температурах.

Использование суперконденсаторов позволит запустить машину даже с «дохлым» АКБ. Поддержание заряда суперконденсаторов не требует мощного аккумулятора. Если кондеры подключить параллельно с АКБ автомобиля, то срок службы аккумулятора возрастет многократно. Токовый удар сгладится.

Конструкция и использование ионисторов

Суперконденсаторы по устройству и принципу работы отличаются от классических электролитических конденсаторов, хотя кажутся на них похожими. Основное отличие состоит в том, что суперконденсаторы имеют более сложную форму – их название, электрический двухслойный конденсатор (EDLC), указывает на двухслойную структуру.

Облицовка конденсатора отделена от электролита «собственными» диэлектрическими слоями, что делает заменяющую модель такого конденсатора включающей в себя два последовательно соединенных конденсатора. Между облицовками имеется дополнительный слой ионопроницаемого сепаратора, предназначенный для предотвращения случайного замыкания электродов.

Ионисторы на замену аккумуляторным батареям
Схема суперконденсатора EDLC

Конструктивно похожие на EDLC конденсаторы представляют собой так называемые гибридные конденсаторы, в которых накопление электрического заряда происходит с помощью двух механизмов. Первый из них – типичный для конденсаторов, то есть за счет накопления электростатической энергии.

Второй механизм основан на электрохимических явлениях, которые заставляют суперконденсатор вести себя как обычная батарея. Такой гибридный принцип работы делает характеристики заряда и разряда немного более сложными, чем у классических конденсаторов, но поведение суперконденсаторов в реальных схемах будет определяться в основном электростатической составляющей.

Недостатки

  • Малая величина номинального напряжения. Этот вопрос решают путем соединения нескольких ультраконденсаторов по последовательной схеме, так же, как соединяют несколько гальванических элементов для увеличения напряжения.
  • Повышенная цена на такие устройства способствует удорожанию изделий, в которых они используются. По заверению ученых, скоро эта проблема станет неактуальной, так как технологии постоянно развиваются, и стоимость подобных устройств снижается.
  • Ионисторы не способны накопить большое количество энергии, так как имеют незначительную энергетическую плотность, и не могут обладать мощностью, сравнимой с аккумуляторами. Это негативно влияет на область их использования. Эта проблема может частично решиться путем подключения нескольких ионисторов вместе, по параллельной схеме.
  • Необходимость соблюдения полярности при подключении.
  • Не допускается короткое замыкание между электродами, так как от этого сильно возрастет температура ультраконденсатора, и он может выйти из строя.
  • Ионисторы хорошо работают в цепях пульсирующего и постоянного тока. Но при высокочастотном пульсирующем токе они сильно нагреваются ввиду их большого внутреннего сопротивления, что часто приводит к выходу из строя.

Ионисторы на замену аккумуляторным батареям | 2 Схемы

Параметры

Ионисторы отличаются следующими характеристиками:

  1. Внутреннее сопротивление (измеряется в миллиОмах).
  2. Максимальный ток. (А).
  3. Номинальное напряжение (В).
  4. Емкость (Ф).
  5. Параметры саморазряда.

В качестве электродов в приборе применяется активированный уголь или углерод на вспененной основе. Эти компоненты помещаются в электролит. Сепаратор предназначен для защиты устройства от короткого замыкания электродов. В современных устройствах не используется электролит на основе кислоты или кристаллического раствора щелочи, так как данные компоненты обладают высоким уровнем токсичности.

Во внутренних полостях конструкции содержится электролит, запасающий электроэнергию при взаимодействии с пластинами. Первые электрохимические ионисторы (молекулярные накопители энергиибыли) разработаны более 50 лет назад. Они были изготовлены на основе пористых углеродных электродов.

При использовании ионисторов можно добиться более экономичного режима работы за счет аккумулирования излишков энергии. Между обкладками конструкции располагается не стандартный слой диэлектрика, а более толстая прослойка, позволяющая получить тонкий зазор.

При этом прибор обеспечивает возможность получения электроэнергии в больших объемах. Суперконденсатор аккумулирует и расходует заряды быстрее, чем альтернативные варианты. Двойной слой диэлектрика увеличивает площадь электродов. Это позволяет улучшить электрические характеристики.

Ионисторы на замену аккумуляторным батареям | 2 Схемы

Перспективы развития

Согласно заявлениям сотрудников MIT 2006 года, ионисторы могут в скором времени заменить обычные аккумуляторы. Кроме того, в 2009 году были проведены испытания аккумулятора на основе ионистора, в котором в пористый материал были введены наночастицы железа.

Полученный двойной электрический слой пропускал электроны в два раза быстрее за счёт создания туннельного эффекта. Группа учёных из Техасского университета в Остине разработала новый материал, представляющий собой пористый объёмный углерод. Полученный таким образом углерод обладал свойствами суперконденсатора.

В настоящее время создана одна из необходимых частей конденсатора — твёрдый нанокомпозиционный электролит с проводимостью по ионам лития. Ведётся разработка электродов для конденсатора. Одна из задач — уменьшить размеры ионистора за счёт внутреннего строения.

Учёные из Центра нанотехнологий Университета центральной Флориды (UCF) в 2022 году разработали гибкий ионистор, состоящий из миллионов нанометровых проволок, покрытых оболочкой из двумерных дихалькогенидов. Такой суперконденсатор выдерживает более 30 тысяч циклов зарядки.

Российские учёные из Сколковского института науки и технологий (Сколтех) (Сколково) в 2022 году разработали новый способ замещения атомов углерода на атомы азота в кристаллической решетке суперконденсаторов, который позволяет шестикратно увеличить их ёмкость, а также увеличить стабильность в циклах зарядки-разрядки.

Сейчас читают:  Стекла для автомобиля Renault Logan | Боковые, задние, лобовые стекла Renault Logan

Изобретённый способ плазменной обработки углеродных наностенок структурной решётки ионисторов замещает до 3% атомов углерода на атомы азота. Удельная ёмкость наностенки после такой обработки достигает 600 Ф/г. Учёные также объяснили, смоделировали и описали механизм включения атомов азота в углеродную решётку. Данное исследование открывает путь к созданию гибких тонкопленочных суперконденсаторов на основе углеродных наностенок.

Плюсы и минусы конденсатора по сравнению с аккумулятором

АКБ и конденсатор — это устройства, которые накапливают электричество от генератора тока, отдают при необходимости, например, для запуска автомобиля. Каковы же достоинства, недостатки конденсатора по сравнению с аккумулятором?

Плюсы использования:

  1. Ионистер отдает пиковый ток практически мгновенно.
  2. Заряжается суперконденсатор буквально за секунды. Недаром NASA использует их в космическом пространстве.
  3. Безопаснее жидкостного аккумулятора. В отличие от литиевых, свинцовых батарей, заряд накапливается на твердом теле.
  4. Надежно и долговечно. Конденсаторы позволяют производить до миллиона перезарядок. Вместо 1—2 тысяч у электрохимических батарейных АКБ.
  5. Эффективность отдачи энергии 98 %.
  6. Ионистеры устойчивы к экстремально низким или высоким температурам, механическим повреждениям.

Недостатки в сравнении с АКБ:

  1. Большой коммерческий суперконденсатор накапливает лишь 20 % от энергии АКБ похожего размера.
  2. Малая плотность энергии на единицу массы.
  3. Низкая автономность без внешнего питания.
  4. Высокая скорость саморазряда.
  5. Самый мощный ионистер не сможет питать бортовую сеть даже в течение нескольких минут.

Видимо, пока конденсатор может применяться лишь для запуска двигателя, но не для длительной работы в сети автомобиля.

Преимущества и недостатки

Как и любое электронное устройство ионисторы в процессе эксплуатации имеют некоторые достоинства и недостатки. К преимуществам производители относят:

  • Имеют пониженную удельную стоимость, если сравнивать емкость конденсатора и аккумулятора.
  • Повышенные показатели внутренней емкости, в результате чего увеличивается количество рабочих циклов заряд-разряд.
  • Более надежные, а также имеют большой срок службы в отличие от кислотных и литиевых аккумуляторов.
  • Отличаются экологической чистотой, благодаря применяемым материалам.
  • Повышенные значения номинальной мощности.
  • Возможность эксплуатирования в широком температурном диапазоне. Низкие температуры не помеха при запуске оборудования любого вида.
  • Значительно увеличенный временной промежуток при восполнении заряда и при рабочем разряде.
  • В отличие от аккумуляторных батарей имеют возможность полного разряда практически до нулевого значения рабочего напряжения.

Интересно знать! Суперконденсаторы имеют сравнительно малые размеры относительно других подобных приборов.

Однако при наличии многих плюсов в процессе эксплуатации присутствуют и минусы. К недостаткам относят:

  • Малая плотность энергетических накоплений относительно аналогичных устройств.
  • Пониженное значение напряжение на единицу внутренней емкости одного элемента.
  • Увеличенное показание самостоятельного разряда.
  • Не окончательно проработанная технология производства ионисторов.

Резервный бп с напряжением выше 5 в

Схемы буферного питания, представленные на рисунках, оправданы для маломощных микроконтроллеров и других схем, способных работать при напряжении питания около 1,8 – 3,3 В. При необходимости получить более высокое напряжения (например USB 5 В), можно выбрать один из четырех вариантов:

  1. Использование суперконденсатора с более высоким допустимым рабочим напряжением – в то время как самые популярные суперконденсаторы предназначены для работы с напряжением до 5,5 В, на рынке представлены модели, состоящие из нескольких ячеек с рабочим напряжением от 1,4 В до 8,4 В в диапазоне суммарной ёмкости до 100 Фарад.
  2. Использование последовательных конденсаторов с одинаковой номинальной емкостью – в этом случае необходимо использовать пассивный делитель напряжения или активный балансир, защищающий конденсатор наименьшей реальной емкости от пробоя.
  3. Использование повышающего преобразователя DC / DC – это наиболее экономичное решение, поскольку позволяет максимально рекуперировать энергию, запасенную в суперконденсаторе.
  4. Применение встроенного контроллера заряда / разряда суперконденсатора – на рынке доступны специализированные контроллеры, позволяющие просто и эффективно управлять схемами питания на основе ионисторов.

Свойства суперконденсаторов

   Среди свойств следует отметить:

Суперконденсаторы, емкость которых обеспечивается их двухслойной структурой, накапливают энергию в поляризованном жидком слое толщиной всего несколько ангстрем, расположенном на границе между раствором электролита с ионной проводимостью и электродом с электронной проводимостью.

По мнению специалистов в этой области, например, г-на Калерта (Dr. Kahlert), суперконденсаторами следует считать конденсаторы емкостью минимум 10 фарад. Суперконденсаторы – это преимущественно двухслойные конденсаторы; конденсаторы, изготовленные по другим технологиям, например, плёночные или керамические, суперконденсаторами не считают.

Обычно, в суперконденсаторе два активных электрода, разделенные пористым непроводящим материалом, размещены между двумя металлическими токовыми коллекторами. Электролит, водный либо органический, пропитывает пористые электроды и обеспечивает возникновение носителей заряда с последующим его накоплением.

Суперконденсатор обычно используют для обеспечения импульсной или пиковой мощности в каком-либо устройстве. Суперконденсатор также используется для кратковременного снабжения устройств энергией и для поглощения энергии из области своего применения. Примером применения пиковой мощности являются линии электропередачи, примером кратковременного снабжения энергией – сотовые телефоны/бытовая электроника и радиотехника, а примером поглощения энергии – устройства регенеративного торможения в гибридных/электрических транспортных средствах.

Суперконденсаторы вместо батареек

Принято считать, что ионисторы являются быстрой и эффективной заменой батарей и аккумуляторов практически в любом устройстве. Но стоит помнить, что из-за всех отличий, а также значительных ограничений этой технологии – прямая замена одного типа источника энергии на другой возможна только при определенных условиях и в строго определенных ситуациях.

Действительно, такое решение кажется очень привлекательным с точки зрения полезности – высокая удельная мощность может успешно использоваться во время разгона, значительно улучшая динамику движения. Замечательная скорость зарядки дарит надежду на то, что электромобиль будущего сможет заряжаться немного дольше, чем просто заправка обычного авто.

Другой пример – накопители энергии, используемые в современных распределенных системах электроэнергии. Подключение потребителей к электросети (которые помимо использования энергии могут и продавать излишки обратно в сеть), а также увеличение количества возобновляемых источников энергии означает, что иногда возникает необходимость хранить неиспользованную энергию низкой нагрузки на сеть.

Это решение позволяет использовать его в периоды повышенного спроса, связанного с суточным циклом (например при работе предприятий). С другой стороны, использование накопителей энергии имеет решающее значение из-за включения в сеть энергоемких зарядных станций для электромобилей – обычная электросеть не сможет справиться с импульсным увеличением тока.

Схема

Вот схема второго прототипа батареи.

Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.

Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.

На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.

А заряжается аккумуляторная батарея через контроллер зарядки.

Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.

Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.

Закладка Постоянная ссылка.
1 ЗвездаНельзя так писать о ЛоганеЧто-то о новом Логане так себе написаноЛоган - супер машинаРено Логан лучше всех! (1 оценок, среднее: 5,00 из 5)
Загрузка...