Вязкость жидкости. Определение вязкости, сравнение 50 различных сред

Содержание

Что такое вязкость

Важной характеристикой вещества является его вязкость. Вязкость жидкости — это ее способность оказывать сопротивление перемещению одних частиц относительно других, то есть противостоять касательным усилиям в потоке. Данный параметр среды нельзя обнаружить в состоянии покоя, он оценивается только во время движения вещества, когда начинают действовать силы сцепления между молекулами.

Существует две разновидности вязкости: динамическая (или абсолютная) и кинетическая. Оба показателя уменьшаются при повышении температуры вещества.

Данное свойство присутствует у всех веществ, которые обладают текучестью. Текучесть — это сдвиг (перемещение) одних частиц по отношению к другим той же самой среды. За счет силы внутреннего трения вязкость противостоит процессу текучести. Данная формулировка относится не только к жидким, но и к газообразным веществам. А вот применительно к твердым это свойство имеет несколько другую природу.

Влияние температуры на вязкость газов

В отличие от жидкостей, вязкость газов увеличивается с увеличением температуры (у жидкостей она уменьшается при увеличении температуры).

Формула Сазерленда может быть использована для определения вязкости идеального газа в зависимости от температуры:[3]

μ=μ0T0 CT C(TT0)3/2,{displaystyle mu =mu _{0}{frac {T_{0} C}{T C}}left({frac {T}{T_{0}}}right)^{3/2},}

где

μ — динамическая вязкость (в Па·с) при заданной температуре T;
μ0 — контрольная вязкость (в Па·с) при некоторой контрольной температуре T0;
T — заданная температура в кельвинах;
T0 — контрольная температура в кельвинах;
C — постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже:

ГазC, KT0, Kμ0, мкПа·с
Воздух120291,1518,27
Азот111300,5517,81
Кислород127292,2520,18
Углекислый газ240293,1514,8
Угарный газ118288,1517,2
Водород72293,858,76
Аммиак370293,159,82
Оксид серы(IV)416293,6512,54
Гелий79,4[4]27319[5]

Вторая вязкость

Вторая вязкость, или объёмная вязкость, — внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и (или) при учёте неоднородности коэффициента второй вязкости по пространству.

Если динамическая (и кинематическая) вязкость характеризует деформацию чистого сдвига, то вторая вязкость характеризует деформацию объёмного сжатия.

Объёмная вязкость играет большую роль в затухании звука и ударных волн и экспериментально определяется путём измерения этого затухания.

Вязкость аморфных материалов

Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс[9]:

η(T)=Aexp⁡(QRT),{displaystyle eta (T)=Aexp left({frac {Q}{RT}}right),}

где

Q{displaystyle Q} — энергия активации вязкости (Дж/моль);
T{displaystyle T} — температура (К);
R{displaystyle R} — универсальная газовая постоянная (8,31 Дж/моль·К);
A{displaystyle A} — некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q{displaystyle Q} изменяется от большой величины QH{displaystyle Q_{H}} при низких температурах (в стеклообразном состоянии) на малую величину QL{displaystyle Q_{L}} при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда (QH−QL)<QL{displaystyle (Q_{H}-Q_{L})<Q_{L}}, или ломкие, когда (QH−QL)⩾QL{displaystyle (Q_{H}-Q_{L})geqslant Q_{L}}. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса RD=QHQL{displaystyle R_{D}={frac {Q_{H}}{Q_{L}}}}: сильные материалы имеют RD<2{displaystyle R_{D}<2}, в то время как ломкие материалы имеют RD⩾2{displaystyle R_{D}geqslant 2}.

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением[10]

η(T)=A1T(1 A2exp⁡BRT)(1 Cexp⁡DRT){displaystyle eta (T)=A_{1}Tleft(1 A_{2}exp {frac {B}{RT}}right)left(1 Cexp {frac {D}{RT}}right)}

с постоянными A1{displaystyle A_{1}}, A2{displaystyle A_{2}}, B{displaystyle B}, C{displaystyle C} и D{displaystyle D}, связанными с термодинамическими параметрами соединительных связей аморфных материалов.
В узких температурных интервалах недалеко от температуры стеклованияTg{displaystyle T_{g}} это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.
Если температура существенно ниже температуры стеклования, T<Tg{displaystyle T<T_{g}}, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

η(T)=ALTexp⁡(QHRT){displaystyle eta (T)=A_{L}Texp left({frac {Q_{H}}{RT}}right)}

с высокой энергией активации QH=Hd Hm{displaystyle Q_{H}=H_{d} H_{m}}, где Hd{displaystyle H_{d}} — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm{displaystyle H_{m}} — энтальпия их движения. Это связано с тем, что при T<Tg{displaystyle T<T_{g}} аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.
При T≫Tg{displaystyle Tgg T_{g}} двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

η(T)=AHTexp⁡(QLRT),{displaystyle eta (T)=A_{H}Texp left({frac {Q_{L}}{RT}}right),}

но с низкой энергией активации QL=Hm{displaystyle Q_{L}=H_{m}}. Это связано с тем, что при T≫Tg{displaystyle Tgg T_{g}} аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Вязкость ацетона

К группе маловязких растворителей относится ацетон. Это бесцветная летучая жидкость органического происхождения, отличающаяся характерным резким запахом. Вязкость продукта составляет 0,000 33 Па•с.

Вязкость бензина


Вязкость — важный показатель качества любого моторного топлива, в том числе бензина. От него зависят надежность работы аппаратуры, использования топлива при низкой температуре, его противоизносные характеристики, процесс сгорания. От вязкости бензина зависит скорость его поступления к двигателю по топливной системе.

На вязкость бензина влияет его химический и фракционный состав. Так, при увеличении процентного содержания нафтеновых и ароматических углеводородов, утяжелении фракционного состава топлива оно становится более вязким.

В целом вязкость бензина невелика (у разных марок она колеблется в узком диапазоне — 0,3–-0,7 Ст при температуре 20 °С, так что при конструировании бензопроводов эта величина считается относительно постоянной), и даже ее небольшое увеличение при понижении температуры не вызывает осложнений в функционировании двигателей (в отличие от других видов топлива, для которых вязкость более сильно влияет на эксплуатационные свойства).

Для перекачивания бензина (как и для прочих видов топлива) используют многочисленные типы насосов: поршневые, шестеренчатые, плунжерные, мембранные, винтовые, пластинчатые.

Вязкость битума


Битум — это остаточный продукт, образуемый в ходе переработки нефти. Он представляет собой смесь углеводородов и их производных. По консистенции это вещество твердое или смолоподобное, но при использовании в промышленных условиях (например, при приготовлении асфальтобетонных смесей) его нагревают до текучего состояния. Оптимальная вязкость битума при этом должна составить примерно 20 Па•с.

Для битумов различных марок, имеющих разную консистенцию, температура, которая позволяет достигнуть указанной вязкости, неодинакова. Она колеблется от 100 до 160 °С. Причем при необходимой температуре вещество можно выдерживать не более 5 часов, чтобы не допустить развития процессов старения (при температуре не более 80 °С вязкий битум допускается выдерживать до 12 ч).

Для перекачивания битума в промышленности используют, как правило, шестеренные насосы.

Вязкость воды


Вязкость воды – одно из ее ключевых свойств, с которым мы сталкиваемся ежедневно. Кинематическая вязкость этой самой популярной на планете жидкости при температуре 0 °С составляет 1,789 •106 м2/с. Динамическая вязкость воды при температуре 20 °С будет 1,004•10-3 Па•с.

Данный параметр очень важен для здоровья и жизнедеятельности человека:

  • от него зависит вязкость крови всех живых существ;
  • если бы вода имела меньшую вязкость, то у человека разрушились бы тонкие структуры капилляров;
  • подземные воды способны двигаться, в том числе направляясь к земной поверхности;
  • за счет своей небольшой вязкости вода очень текуча и переносит большое число растворенных взвешенных частиц.

Для перекачивания воды подходят все типы насосов, но чаще всего используются центробежные.

Вязкость воздуха

Вязкость воздуха зависит в основном от температуры.
При 15,0 °C вязкость воздуха составляет 1,78⋅10−5 кг/(м·с) = 17,8 мкПа·с = 1,78⋅10−5 Па·с. Можно найти вязкость воздуха как функцию температуры с помощью программ расчёта вязкостей газов[11].

Вязкость воска

Воск как продукт восковых желез пчел представляет собой смесь сложных эфиров жирных кислот и высших спиртов. По своим физическим свойствам это твердая, мелкозернистая в изломе субстанция (при комнатной температуре) с окраской, которая варьируется от коричневой до практически бесцветной.

Кроме животного воска, существуют природные растительные и минеральные воски, по своим свойствам близкие к пчелиному. Пример первых — воск пальмовых листьев (карнаубский воск), пример вторых — парафин, нефтяные отложения. Также данный продукт синтезируют искусственным путем.


Наибольшей вязкостью воск обладает при температуре, близкой к температуре его застывания. Причем при 100 °С вязкость воска снижается вдвое, но все равно она значительно больше, чем у воды.

Вязкость газа

Газ — это такое агрегатное состояние вещества, при котором связи между его частицами очень слабые, а сами они подвижны, почти свободно, хаотически перемещаются в промежутках между столкновениями, при которых резко меняют характер своего движения.

За счет вязкости газа выравниваются скорости движения различных его слоев. Именно поэтому, например, ветер со временем затихает.


Примечательно, что при повышении температуры вязкость газов в отличие от жидкостей возрастает. Связано это с тем, что интенсивность беспорядочного теплового движения молекул при нагревании увеличивается, они перемещаются быстрее.

Динамическая вязкость основных газов имеет следующие показатели при 0 °С:

  • воздух — 1,73•10-5 Па•с;
  • аммиак — 0,92•10-5 Па•с;
  • водород — 0,84•10-5 Па•с;
  • углекислый газ — 1,36•10-5 Па•с;
  • неон — 2,98•10-5 Па•с (самый вязкий газ);
  • гелий — 1,8•10-5 Па•с;
  • азот — 1,66•10-5 Па•с;
  • кислород — 1,95•10-5 Па•с;
  • ксенон — 2,12•10-5 Па•с;
  • хлор — 1,23•10-5 Па•с;
  • метан — 1,03•10-5 Па•с;
  • пропан — 0,75•10-5 Па•с.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

η=13⟨u⟩⟨λ⟩ρ,{displaystyle eta ={frac {1}{3}}langle urangle langle lambda rangle rho ,}

где ⟨u⟩{displaystyle langle urangle } — средняя скорость теплового движения молекул, ⟨λ⟩{displaystyle langle lambda rangle } − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ{displaystyle rho } прямо пропорциональна давлению, а длина пробега ⟨λ⟩{displaystyle langle lambda rangle } — обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).
С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа u{displaystyle u}, растущей с температурой как T{displaystyle {sqrt {T}}}.

Сейчас читают:  Рено логан какие двигатели гнут клапана

Вязкость глицерина


Глицерин представляет собой органическое соединение, относящееся к группе спиртов (трехатомный спирт). Это бесцветная сиропообразная жидкость, сладковатая на вкус, с широким спектром использования: востребована не только в лекарственных и косметических целях, но и в пищевой, лакокрасочной, бумажной, текстильной промышленности, электротехнике, сельском хозяйстве и пр. Добывают глицерин из растительных жиров или посредством химического синтеза.

Вязкость глицерина довольно высока — составляет 1,48 Па•с при температуре 20 °С, а это почти в 1500 раз выше вязкости воды.

Для перекачивания глицерина больше всего подходят шестеренчатые, импеллерные и мембранные насосы.

Вязкость грунта


Грунт — многокомпонентное геологическое образование, включающее в себя почвы, различные горные породы, являющееся объектом инженерно-строительной деятельности человека.

Вязкость грунтов определяет их сопротивление течению под воздействием внешних сил. Этот показатель зависит от их структуры, химико-минералогического состава. Коэффициент вязкости для грунтов разного типа колеблется в широких диапазонах: от 102–104 пз для илов до 1022 пз для известняка. С увеличением плотности грунта его вязкость, а кроме того, порог ползучести увеличиваются.

По величине вязкости данной среды выделяются:

  • наименее вязкие горные породы (тощие глины, гипсы, соли, тонкослоистые алевролито-глинистые толщи);
  • слабовязкие породы (песчано-глинистые, тонкослоистые известняково-мергелистые, флишевые толщи);
  • сильно вязкие породы (слабослоистые песчаниковые, конгломератовые, карбонатные, вулканогенные);
  • наиболее вязкие породы (кристаллические сланцы, граниты, гнейсы).

Вязкость гудрона

Гудрон — это остаток, образующийся в процессе отгонки из нефти фракций, которые выкипают до 450–600 °С под вакуумом при атмосферном давлении. Выход данного вещества составляет 10–45 % от нефтяной массы. Гудрон представляет собой очень вязкую жидкость черного цвета либо твердую асфальтоподобную субстанцию с блестящим изломом.


В зависимости от температуры кинематическая вязкость гудрона составляет 40–91 сСт.

Применяется вещество в основном в дорожном строительстве, кровельных работах, производстве малозольного кокса, в качестве смягчителя в резиновой промышленности.

Вязкость дизеля

Дизельное топливо является продуктом фракционирования нефти с температурой кипения 140–360 °С. Оно может содержать добавки, которые улучшают его эксплуатационные свойства, например температуру застывания.


Важным показателем дизеля выступает его вязкость. Именно от нее во многом зависят важные свойства топлива: способность хорошо распыляться, полностью сгорать в моторе, не вызывать коррозии, хорошо прокачиваться в топливной аппаратуре, не утрачивать свои характеристики при длительном хранении.

Летние сорта дизеля отличаются высокой вязкостью. Они становятся плотными при 3–5 °С, в топливе кристаллизуются частицы парафина. Летними марками нельзя пользоваться при температуре ниже 0 °С. Зимние сорта дизельного топлива имеют меньшую вязкость, что обеспечивает исправную работу двигателя в холодный сезон, в том числе в осенне-весенний период.

Вязкость жидкой стали

Жидкая сталь — это сплав железа с примесями. Их сочетания разнообразны, потому свойства вещества колеблются в широких диапазонах, в том числе вязкость.


При температуре 1480–1650 °С показатель вязкости жидкой стали находится в пределах 4,5–6,0 мПа•с (для сравнения: вязкость железа при его перегреве выше точки плавления —5,4 мПа•с).

Легирующие элементы и раскислители в составе стали влияют на ее вязкость. К примеру, увеличение доли никеля приводит к снижению данного показателя, а увеличение содержания хрома — к ее возрастанию.

Вязкость каучука

Каучук представляет собой продукт полимеризации некоторых диеновых углеводородов с сопряженными связями. Он может иметь природное или синтетическое происхождение. В процессе вулканизации каучук, сам по себе непрочный и липкий, трансформируется в упругую эластичную резину. Важнейшими свойствами вещества являются эластичность, электроизоляция, газо- и водонепроницаемость.


Как и большинство полимеров, каучук способен пребывать в одном из следующих состояний: стеклообразном, вязкотекучем и высокоэластичном. При обычных температурных условиях вещество высокоэластично.

Вязкость каучука обусловлена его молекулярной массой и способом его синтеза.

Вязкость керосина

Растворитель керосин также имеет небольшую вязкость (0,001 49 Па•с при комнатной температуре). Это прозрачное вещество масляной структуры, прозрачное либо желтоватого оттенка. Получают керосин при прямой перегонке нефти.

Данная субстанция применяется и в других целях: как реактивное топливо в ракетах, самолетах, как горючее для бытовых осветительных приборов, при обжиге стекла и фарфора, в оборудовании для резки металлов.

Вязкость кефира


Кефир, густой кисломолочный продукт, получают из молока (цельного или обезжиренного) посредством брожения с использованием специальных кефирных грибков (симбиоза ряда микроорганизмов). Напиток имеет кисловатый вкус, относительно богат углекислым газом.

Вязкость хорошего кефира составляет 2,9–3,2 Па•с. Этот показатель обусловлен содержанием в продукте жира, кислотности напитка.

Вязкость кислот

Кислоты представляют собой целый класс химических веществ, в составе которых имеется атом водорода и кислотный остаток. Эти соединения бывают неорганическими и минеральными.

Вязкость кислот в целом больше, чем у воды. К примеру, серная кислота по данному показателю напоминает масло: динамическая вязкость составляет 0,027 534 Па•с. а кинематическая — 0,1501 см²/с (при 20 °C).


Такие агрессивные среды, как кислоты, в промышленных условиях перекачивают мембранными и центробежными насосными аппаратами.

Вязкость клея

Клей — это вещество либо смесь органического или неорганического происхождения, способные соединять различные материалы. Для данного продукта вязкость перед его отверждением выступает важной характеристикой. Многочисленные современные клеевые системы имеют разную степень вязкости, она варьируется от водоподобных жидкостей до смолообразных субстанций.

От вязкости зависит способ нанесения клея. Составы низкой вязкости наносятся с минимальным давлением, однако могут требовать фиксации, чтобы не допустить нежелательного вытекания.

Клеи на основе ПВА относят к псевдопластическим жидкостям: их вязкость меняется от скорости течения, при перемешивании они разжижаются. Данная зависимость отличается у разных составов.


В целом жидкие клеевые материалы классифицируются на 3 группы:

  • низковязкие, имеющие показатель вязкости до 3 Па•с (их можно наносить краскопультом);
  • средневязкие (5–20 Па•с, предполагают использование кисти, валика);
  • высоковязкие (свыше 25–30 Па•с, наносятся шпателем).

На производстве клей перекачивают мембранные и поршневые бочковые насосы.

Вязкость краски

Вязкость — важный показатель для лакокрасочных материалов. Для краски это основа ее качества, устойчивости к разрушению в процессе работы. Вязкость определяет толщину краски, способ ее нанесения (кистью, валиком, распылителем и пр.), влияет на производительность.


Неправильная вязкость краски или лака может спровоцировать растрескивание вещества на поверхности. Данный параметр зависит от ряда факторов:

  • химический состав;
  • концентрация разбавителя или растворителя;
  • температура (самой краски, поверхности, воздуха).

Для перекачивания лакокрасочных материалов лучше всего подходят мембранные пневматические насосы.

Вязкость крема

Любой крем независимо от плотности является эмульсией — состоит из масляной основы, воды и вещества, которое удерживает их вместе (эмульгатора). Вязкость данной субстанции (особенно востребованной в косметической отрасли) определяется ее консистенцией, густотой, текучестью.

Правильная вязкость крема зависит от его предназначения: должен ли он, к примеру, впитываться в кожу либо, наоборот, образовывать на ней защитный слой. В любом случае крем должен иметь вязкость, которая позволит ему равномерно и легко распределяться при втирании.

Вязкость крови


Кровь представляет собой жидкую среду организма (вязкопластическую жидкость), состоящую из плазмы и находящихся в ней клеток (эритроцитов, тромбоцитов, лейкоцитов, белков). Она определяет качество всех процессов, происходящих в тканях и отдельных органах.

Вязкость крови показывает соотношение количества ее кровяных клеток к объему плазмы. Этот показатель крайне важен для полноценной работы организма и прежде всего сердечно-сосудистой системы. Нормальным значением в среднем считается 4–5 мПа•с, отклонения же в ту или иную сторону способны вызвать серьезные патологии.

На вязкость крови влияют многие факторы: температура тела, состав (венозная более вязкая, чем артериальная), пол (у мужчин — 4,3–5,3 мПа•с, у женщин — 3,9–4,5 мПа•с), возраст (у новорожденных вязкость выше), внешние воздействия, применение медицинских препаратов.

Для перекачивания крови животных на производстве используется насосные установки разных типов: центробежные, мембранные, шестеренчатые, винтовые, перистальтические.

Вязкость мазута


Мазут является продуктом первичной нефтепереработки. Вязкость является важнейшим критерием его эксплуатации, транспортировки, перекачивания, сжигания. Мазут бывает высоковязким и маловязким. В первом случае он содержит больше смолистых веществ и парафина.

Согласно показателю вязкости выделяют несколько марок мазута, каждая из них имеет свою температуру застывания вещества. Наиболее вязкие сорта застывают уже при 25 °С. Чтобы перекачивать такой продукт, его приходится подогревать до 60–70 °С. В подогреваемом мазуте начинают плавиться церезины, твердые парафины, но прекращение термообработки вновь приводит к увеличению вязкости, она быстро возвращается на исходный уровень.

Для перекачивания мазута подходят шестеренчатые, винтовые, ламинарные, реже центробежные насосы.

Вязкость масла

Растительные масла — это продукты, которые извлекаются из растительного сырья, состоят из жирных кислот и сопутствующих компонентов (воски, стеролы, красящие пигменты и пр.). Вязкость растительных масел обусловлена молекулярной массой жирных кислот, которые входят в их состав. Чем она больше, тем, соответственно, масло более вязкое.


В целом вязкость натуральных масел колеблется в узком диапазоне, она примерно в 158 раз больше вязкости воды. К примеру, вязкость оливкового масла составляет 84•10-3 Па•с, касторового — 987•10-3 Па•с.

Масло в промышленности перекачивают шестеренчатыми, роторными, винтовыми насосами.

Вязкость меда

Очень вязкой жидкой средой является мед. Его вязкость зависит от зрелости, то есть от содержания в продукте воды. Так, при содержании 25 % воды коэффициент вязкости меда равен 1,051, а при 16,6 % — 9,436 (при температуре 45 °С). Кроме того, этот показатель увеличивается в результате кристаллизации. Вязкость продукта повышают декстрины и коллоиды.

Зрелость меда определить несложно. Нужно зачерпнуть ложкой продукт и быстро поворачивать ее: незрелый мед будет стекать.


Хотя состав меда не особо влияет на его вязкость, некоторые сорта в этом отношении отличаются. В связи с этим выделяется 5 групп продукта:

  • очень жидкий (акациевый, клеверный).
  • жидкий (гречишный, липовый, рапсовый);
  • густой (одуванчиковый);
  • клейкий (падевый);
  • студнеобразный (вересковый).

В промышленных условиях мед перекачивают кулачковыми и винтовыми насосами.

Вязкость меди

Медь является золотисто-розовым металлом с характерным блеском. Она имеет высокую плотность (почти в 4 раза тяжелее железа, алюминия), температуру плавления (1083 °С) и кипения. Важным свойством меди является устойчивость к коррозии.

Сейчас читают:  Самоучитель вождения автомобиля. Обучение вождению автомобиля в интернете. Виртуальный инструктор по вождению.

Металл хорошо подвергается обработке. Благодаря своим ценным качествам он востребован в электротехнике, электромашиностроении, приборостроении, радиоэлектронике, ювелирном деле, медицине. Медь применяется в сплавах с цинком, оловом, алюминием, никелем, золотом, серебром, титаном.


Вязкость жидкой меди при температуре 1145 °С имеет значение 0,0341 Пуаз. На данный показатель (как и на другие механические свойства) влияет наличие примесей, предварительная механическая обработка (прокатка, прессование). Большое влияние на вязкость расплавленного металла оказывает растворенный в ней кислород. Некоторые элементы (свинец, мышьяк, сурьма, фосфор) снижают вязкость медных расплавов.

Вязкость молока

Вязкость молока складывается из данного показателя воды, а также суммы приращений от вязкости дисперсной фазы и структурных связей. Данное свойство продукта напрямую зависит от содержания в нем жиров и казеина, состояния сывороточных белков и технологических режимов обработки (они вызывают изменение агрегатного состояния компонентов молока).

Вязкость продукта будет тем больше, чем выше массовая доля молочного жира и казеина, а также степень дисперсности среды. Так, этот показатель у обезжиренного молока в среднем равен 1,5•10-3 Па•с, у цельного питьевого — 1,8•10-3 Па•с, у молока, гомогенизированного при давлении 1500 Па, — 1,86•10-3 Па•с.

Вязкость молока и молочных продуктов возрастает с увеличением в них массовой доли сухих веществ. При нагревании данный показатель возрастает тогда, когда температура переходит за точку коагуляции сывороточных белков, что применяется в производстве сгущенного молока (его вязкость будет гораздо больше, чем у исходного продукта, — 3,6 Па•с).


Для перекачивания молока в промышленности востребованы различные типы насосного оборудования: пищевые центробежные, шестеренчатые, мембранные, перистальтические, импеллерные, насосы-дозаторы.

Вязкость муки

Мука — продукт, который получают посредством измельчения зерен с/х культур (в основном злаковых) до порошкообразной консистенции. На муку размалывают преимущественно пшеницу, рожь, в меньших объемах кукурузу, ячмень и прочие зерновые культуры.

Сила муки — показатель, определяющий ее хлебопекарные качества. Он обозначает, как поведет себя тесто при замесе, каким будет его вязкость, эластичность, упругость, водопоглотительная способность. В зависимости от реологических свойств теста классифицируют муку сильную, среднюю, слабую по силе.

Вязкость водно-мучной смеси обусловлена содержанием в муке клейковины, которая разбухает в растворенном виде.

Вязкость мыла


Мыло — твердый либо жидкий продукт, который содержит поверхностно-активные вещества. При соединении с водой он ведет себя как косметическое средство, очищающее кожу (туалетное мыло), или же как моющее средство бытовой химии (хозяйственное мыло). В последнее время данный продукт массового использования все больше применяется именно в жидком виде.

По химическому составу мыло представляет собой натриевые либо калиевые соли высших карбоновых кислот, которые получают в процессе гидролиза жиров в щелочной среде. Также оно может содержать ароматизаторы, красители и прочие ингредиенты.

Вязкость мыльных растворов зависит не только от температуры. Этот показатель растет с повышением концентрации мыла. Включение в мыльные растворы небольшого объема электролитов снижает вязкость, а введение их большого количества ведет к повышению вязкости и последующему высаливанию продукта.

Вязкость натрия

Натрий является пластичным металлом серебристого оттенка. На воздухе он быстро окисляется, тускнеет. Данный металл настолько мягкий, что его можно резать ножом, прессовать, прокатывать. Он легче воды, хорошо проводит тепло, электрический ток.

Натрий имеет значительную разницу между температурами кипения и плавления — около 800 градусов: плавится при 98 °С, а кипит при 883 °С. За счет этого вещество представляет собой хороший теплоноситель для атомных реакторов. Оно в целом широко востребовано в промышленности.

Натрий важен для живых организмов, для обменных процессов, функционирования сердечно-сосудистой и нервной систем. Для человека вреден как недостаток, так и избыток этого химического элемента.

Кинематическая вязкость натрия при температуре 98 °С составляет 6,7•10-7 м2/с, при температуре же 927 °С этот показатель уже равен 2,1•10-7 м2/с.

Вязкость некоторых веществ

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.

Вязкость нефти

Нефть является маслянистой горючей жидкостью природного происхождения. Она состоит из сложной смеси углеводородов с разной молекулярной массой и некоторых других компонентов. Вязкость этой жидкости, как и плотность, представляет собой ее важнейшее физическое свойство.

От вязкости нефти зависят ее технологические характеристики:

  • подвижности ископаемого в пласте в процессе его добычи;
  • скорость фильтрации в пласте;
  • мощность применяемого насоса для выкачивания вещества;
  • тип вытесняющего агента;
  • условия транспортировки «черного золота» по нефтепроводу.

Показатель вязкости нефти позволяет примерно оценить ее состав: чем выше это значение, тем больше в веществе молекулярный вес фракций. Высоковязкая нефть (более тяжелая) содержит много смолисто-асфальтеновых компонентов, что затрудняет процесс ее переработки. Такой продукт труднее транспортировать и перерабатывать.


Растворенный в нефти газ также влияет на ее вязкость: углеводороды разжижают продукт, а азот, напротив, повышает вязкость.

Для перекачивания нефти в промышленности применяют винтовые, поршневые и центробежные аппараты.

Вязкость парафина

Парафин является смесью углеводородов преимущественно метанового ряда. Парафины бывают жидкими (температуре их плавления составляет менее 27 °C), твердыми (28–70 °C), микрокристаллическими (или церезины, плавятся при температуре свыше 60–80 °C).


Расплавленные парафины обладают небольшой вязкостью. Но при одинаковой температуре наиболее вязкими являются церезины.

Применяются парафины для изготовления парафинистой бумаги, пропитывания древесины в карандашном и спичечном производстве, для аппретирования тканей, в медицине для парафинотерапии и пр.

Вязкость патоки

Патока представляет собой очищенный концентрированный сироп, полученный при неполном гидролизе картофельного или кукурузного крахмала или производстве сахара. Это вязкая прозрачная, сладкая жидкость (на вкус слаще сахара), состоящая из смеси глюкозы, мальтозы, высших сахаридов. Многообразие сортов патоки обусловлено сочетаниями данных углеводов.


Существует две разновидности патоки:

  • светлая (крахмальная), получают из крахмала;
  • темная, получают при производстве сахара из сахарной свеклы.

Вязкость патоки составляет 0,1 Па•с.

В промышленности данный пищевой продукт перекачивают винтовыми насосами.

Вязкость различных веществ

При всем многообразии существующих жидкостей они различаются по степени своей вязкости. Этот показатель имеет важное значение для использования вещества в промышленных и бытовых целях.

Вязкость растворителей


Растворители представляют собой химические соединения, способные преобразовывать различные вещества в раствор (гомогенную однородную систему, состоящую из 2 и более компонентов). Обычно они используются в роли среды для проведения химических реакций, для технологических целей.

Растворители классифицируются на органические и неорганические (важнейший из них — это вода). По степени вязкости они подразделяются на маловязкие (до 0,002 Па•с), средневязкие (0,002–0,01 Па•с), высоковязкие (свыше 0,01 Па•с).

Растворители в промышленности перекачивают разными типами насосов, например мембранными, вихревыми, плунжерными аппаратами.

Вязкость сахарного сиропа


Сахаром в быту называется сахароза. Свекловичный и тростниковый сахар (в виде песка и рафинада) — очень важный продукт питания. Сахароза относится к углеводам, питательным веществам, заряжающим организм энергией.

Сахарный сироп (основа многих мучных и кондитерских изделий) обладает определенной вязкостью. Она есть уже у самой воды, в составе данной среды. С повышением концентрации растворов вязкость сиропов увеличивается. При концентрации сахара свыше 80 % начинается процесс кристаллизации сахара.

Выделяют следующие разновидности сиропов.

1. Сахарно-паточный. Помимо растворенного в воде сахара содержит патоку. Имеет более высокую вязкость.

2. Инвертный. Обладает более низкой вязкостью, но повышенной гигроскопичностью.

3. Молочный. Растворителем здесь служит молоко (цельное, сухое, сгущенное, сливки), возможно добавление патоки. Данный сироп выступает основным полуфабрикатом при изготовлении молочных конфет, помадных масс.


Для перекачивания сиропов лучше всего подходят центробежные и кулачковые насосы.

Вязкость серы

Сера — твердое кристаллическое вещество ярко-желтого цвета. При плавлении же она трансформируется в желтую легкоподвижную жидкость. При температуре примерно 200 °С сера становится очень вязкой, густой (93,1 Па•с), приобретает бурый цвет, но при последующем нагревании снова становится жидкостью с вязкостью 0,16 Па•с.

Вязкость сливок

Сливки синтезируют из цельного молока методом сепарации жировой фракции. В ходе данного процесса крупные шарики жира переходят в сливки, мелкие же остаются в молоке.


Продукт представляет собой полидисперсную многофазную систему, состоящую из аналогичных с молоком компонентов, но с иным соотношением жировой фазы и плазмы. По этой причине физико-химические свойства данных жидкостей различны.

Вязкость сливок прямо пропорциональна массовой доле содержащегося в них жира. Так, в продукте жирности 32%его вязкость составит примерно 21•10-3 Па•с, при жирности 33% — 35•10-3 Па•с.

Вязкость смазки

Для смазочных материалов, например моторного масла, вязкость является главнейшей характеристикой. Она определяет толщину и несущую способность масляной пленки между трущимися деталями. Чем выше показатель вязкости, тем больше нагрузки выдерживает смазочный материал при взаимном движении деталей, тем меньше их износ.


В любом смазочном материале содержатся специальные присадки (полимеры). Их процентное содержание в составе отвечает за его вязкость.

Для перекачивания смазки, как правило, используют пневматические поршневые насосы.

Вязкость сметаны

Сметана – кисломолочный продукт, получающийся посредством кисломолочного брожения из сливок и закваски. В процессе образования продукта участвуют белки и молочный жир. Последний в процессе затвердевания и кристаллизации увеличивает устойчивость структуры и вязкость сметаны. Сметана различается по проценту жирности (от 10 до 40 %) и, соответственно, степени калорийности.

Для получения сметаны нужной вязкости при ее производстве сливки пастеризуют при довольно высокой температуре (85–95 °С). Увеличению вязкости конечного продукта также способствует гомогенизация сливок.


Вязкость 15%-ной сметаны составляет 6,722 Па•с при температуре 10 °С.

Перекачивают сметану импеллерными, кулачковыми, винтовыми насосами.

Вязкость смолы

Смола представляет собой твердое либо очень вязкое вещество. Оно может иметь растительное (ее выделяют деревья смолоносных пород) либо синтетическое происхождение (например, эпоксидная смола). Данная структура довольно сложна по своему химическому составу, она застывает при контакте с воздухом, не растворяется в воде, при этом хорошо плавится в химических растворителях.

Вязкость смол очень высока. К примеру, у эпоксидных смол она достигает 2–25 Па•с.


Смолы перекачивают перистальтическими, мембранными, винтовыми бочковыми насосами.

Вязкость спирта

Спирты представляют собой органические соединения, углеводороды, которые обязательно содержат гидроксильную группу ОН (одну или несколько), связанную с углеводородным радикалом.

Сейчас читают:  Отзыв владельца Renault Logan (Рено Логан) 2006 г.

Спирты бывают жидкими, вязкими, твердыми — это обусловлено количеством в молекуле углеводородных радикалов. С ростом их количества снижается водорастворимость вещества.


Хотя некоторые спирты токсичны для человека (этиленгликоль, метилен), они необходимы для естественных процессов метаболизма в организме. Так, многие липиды, поставщики энергии, в своей основе имеют глицерин (представитель спиртов).

Вязкость многих спиртов соизмерима с соответствующим показателем у воды. Например, вязкость этилового спирта составляет 0,00119 Па•с.

Спирты перекачивают импеллерными, мембранными, шланговыми насосами.

Вязкость сыра


Сыр — это пищевой продукт, получаемый из молока путем введения молочнокислых бактерий, ферментов, способствующих его свертыванию, либо посредством плавления молочных продуктов.

Сыры классифицируются на твердые, мягкие, плавленые, рассольные. Показатель вязкости целесообразно рассматривать у плавленых сыров.

Вязкость данного продукта снижается при повышении содержания в нем влаги. На нее также влияет зрелость исходного сырья, вид и доза солей-плавителей, активная кислотность сыра. В слабой степени на вязкость влияет содержание в сырье жира, хотя он и увеличивает пластичность сырной массы.

Вязкость теста


Тесто принадлежит к группе пластичных тел, сочетает в себе свойства жидкости и твердого тела. Поэтому оно должно иметь определенное соотношение упругих и вязких свойств. Это коллоидная система, имеющая эластичный элемент в виде соприкасающихся и слипающихся нитей и пленок, а в качестве вязкого элемента — массу из набухших зерен крахмала и раствора коллоидных веществ (белков, декстринов и пр.) и сахаров.

От вязкости теста зависит его пластичность. После прекращения растяжения продукт теряет напряжение. В растянутом жгутике теста сочетаются вязкость и эластичность, а напряжение постепенно уменьшается (затухает).

Более мягким и вязким тесто становится от сахара, однако при его избытке продукт начинает прилипать к рабочему оборудованию, а сами заготовки расплываются в процессе выпекания.

Для перекачивания теста в промышленности используют пищевые импеллерные и поршневые насосы.

Вязкость чернил


Чернила представляют собой жидкий краситель, предназначенный для письма либо создания изображений посредством штампов или специальной аппаратуры (принтер). Данное вещество состоит из ряда компонентов:

  • пигмент;
  • растворитель;
  • модификаторы (вязкости, стойкости, смачиваемости, ПАВ, консерванты и пр.).

На качество струйной печати существенно влияют физические характеристики чернил: вязкость, плотность, водо- и цветостойкость, поверхностное натяжение и пр. При этом особенно важна вязкость жидкости. Она влияет на следующие качества печати:

  • текучесть внутри картриджа и головки;
  • кавитация чернил;
  • стабильность при разбрызгивании;
  • проникновение, резкость;
  • время высыхания чернил.

Вязкость электролитов

Электролит — это вещество (кислоты, соли, основания), раствор или расплав которого способен проводить электрический ток за счет распада на ионы. В человеческом организме электролиты имеют важное значение: в крови вместе с ионами железа они переносят кислород, регулируют работу сердца, кишечника, водно-солевой баланс.


На процесс электролиза влияет (наряду с прочими свойствами) вязкость электролита. При этом в промышленности, например в работе аккумуляторов, предпочтительны электролиты с меньшей вязкостью.

Перекачивают электролиты погружными химическими насосами центробежной конструкции.

Вязкость этиленгликоля

Этиленгликоль является простейшим двухатомным спиртом. В очищенном виде он представляет собой бесцветную прозрачную жидкость маслянистой консистенции. Вещество со сладковатым вкусом не имеет запаха. Этиленгликоль токсичен.


Вязкость вещества примерно в 19 раз превышает вязкость воды.

Динамическая вязкость

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Для так называемых ньютоновских жидкостей (которых вокруг нас большинство) справедлив общий закон внутреннего трения — закон Ньютона:

τ=−η∂v∂n.{displaystyle tau =-eta {frac {partial v}{partial n}}.}

Коэффициент вязкости η{displaystyle eta } (коэффициент динамической вязкости, динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что η{displaystyle eta } будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля — Андраде:

η=Cew/kT.{displaystyle eta =Ce^{w/kT}.}

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским[6]. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества VM{displaystyle V_{M}}. Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение

η=cVM−VC,{displaystyle eta ={frac {c}{V_{M}-V_{C}}},}

где:

c{displaystyle c} — константа, характерная для определенной жидкости;
VC{displaystyle V_{C}} — собственный объём, занимаемый частицами жидкости.

Динамическая вязкость жидкостей уменьшается с увеличением температуры и растёт с увеличением давления.

Динамическая вязкость разных веществ

Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей:

Вязкость отдельных видов газов
Газпри 0 °C (273 K), мкПа·спри 27 °C (300 K), мкПа·с
воздух17,418,6
водород8,49,0
гелий20,0
аргон22,9
ксенон21,223,2
углекислый газ15,0
метан11,2
этан9,5
Вязкость жидкостей при 25 °C
ЖидкостьВязкость, Па·сВязкость, мПа·с
ацетон3,06·10−40,306
бензол6,04·10−40,604
кровь (при 37 °C)(3—4)·10−33—4
касторовое масло0,985985
кукурузный сироп1,38061380,6
этиловый спирт1.074·10−31.074
этиленгликоль1,61·10−216,1
глицерин (при 20 °C)1,491490
мазут2,0222022
ртуть1,526·10−31,526
метиловый спирт5,44·10−40,544
моторное масло SAE 10 (при 20 °C)0,06565
моторное масло SAE 40 (при 20 °C)0,319319
нитробензол1,863·10−31,863
жидкий азот (при 77K)1,58·10−40,158
пропанол1,945·10−31,945
оливковое масло0,08181
пек2,3·1082,3·1011
серная кислота2,42·10−224,2
вода8,94·10−40,894

Кинематическая вязкость

В технике, в частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной

ν=ηρ,{displaystyle nu ={frac {eta }{rho }},}

и эта величина получила название кинематической вязкости[7].

Здесь ρ{displaystyle rho } — плотность жидкости; η{displaystyle eta } — коэффициент динамической вязкости.

Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом: 1 сСт = 1 мм2/c = 10−6 м2/c.

Литература

  • R. H. Doremus. J. Appl. Phys., 92, 7619—7629 (2002).
  • M. I. Ojovan, W. E. Lee. J. Appl. Phys., 95, 3803—3810 (2004).
  • M. I. Ojovan, K. P. Travis, R. J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).
  • Л. И. Седов. Механика сплошной среды. Т. 1. — М.: Наука, 1970. — 492 с.
  • П. Н. Гедык, М. И. Калашникова. Смазка металлургического оборудования. — М.: Металлургия, 1976. — 380 с.
  • И. Ф. Голубев. Вязкость газов и газовых смесей. — М.: Физматлит, 1959.
  • Ред. Ф. Н. Тавадзе Внутреннее трение в металлах, полупроводниках, диэлектриках и ферромагнетиках. — М., Наука, 1978. — 235 c.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье — Стокса[8]):

σij=η(∂vi∂xj ∂vj∂xi),{displaystyle sigma _{ij}=eta left({frac {partial v_{i}}{partial x_{j}}} {frac {partial v_{j}}{partial x_{i}}}right),}

где σi,j{displaystyle sigma _{i,j}} — тензор вязких напряжений.

Среди неньютоновских жидкостей по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама.

С повышением температуры вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.[источник не указан 648 дней]

Относительная вязкость

В технических науках часто пользуются понятием относительной вязкости, под которой понимают отношение коэффициента динамической вязкости (см. выше) раствора к коэффициенту динамической вязкости чистого растворителя:

μr=μμ0,{displaystyle mu _{r}={frac {mu }{mu _{0}}},}

где

μ — динамическая вязкость раствора;
μ0 — динамическая вязкость растворителя.

Примечания

  1. Внутреннее трение в металлах, полупроводниках, диэлектриках и ферромагнетиках: Сб. статей (рус.) / Под ред. Ф. Н. Тавадзе. — М.: Наука, 1978. — 235 с.
  2. О некоторых ошибках в курсах гидродинамики, с. 3—4.
  3. Alexander J. Smits, Jean-Paul Dussauge Turbulent shear layers in supersonic flow. — Birkhäuser, 2006. — P. 46. — ISBN 0-387-26140-0.
  4. Data constants for Sutherland’s formula.
  5. Viscosity of liquids and gases.
  6. Хмельницкий Р. А. Физическая и коллоидная химия: Учебних для сельскохозяйственных спец. вузов. — М.: Высшая школа, 1988. — С. 40. — 400 с. — ISBN 5-06-001257-3.
  7. Попов Д. Н. Динамика и регулирование гидро- и превмосистем : Учеб. для машиностроительных вузов. — М. : Машиностроение, 176. — С. 175. — 424 с.
  8. Седов Л. И. Механика сплошной среды. Т. 1. — М.: Наука, 1970. — С. 166.
  9. Френкель Я. И. Кинетическая теория жидкостей. — Ленинград, Наука, 1975. — с. 226.
  10. Ojovan M. Viscous flow and the viscosity of melts and glasses. Physics and Chemistry of Glasses, 53 (4) 143—150 (2022).
  11. Gas Viscosity Calculator.

Сила вязкого трения

Если параллельные плоские тела площадью

S

каждое, находящиеся на малом расстоянии

h

, движутся в той же плоскости со скоростью

v→{displaystyle {vec {v}}}

друг относительно друга, а пространство между телами заполнено жидкостью или газом, то на каждое из них действует сила, в простейшем случае пропорциональная относительной скорости

v→{displaystyle {vec {v}}}

и площади

S

и обратно пропорциональная расстоянию между телами

h

Ссылки


Как только страница обновилась в Википедии она обновляется в Вики 2.Обычно почти сразу, изредка в течении часа.

Условная вязкость

Условная вязкость — величина, косвенно характеризующая гидравлическое сопротивление течению, измеряемая временем истечения заданного объёма раствора через вертикальную трубку (определённого диаметра). Измеряют в градусах Энглера (по имени немецкого химика К. О. Энглера), обозначают — °ВУ.

Определяется отношением времени истечения 200 мл испытываемой жидкости при данной температуре из специального вискозиметра ко времени истечения 200 мл дистиллированной воды из того же прибора при 20 °С. Условную вязкость до 16 °ВУ переводят в кинематическую по таблице ГОСТ, а условную вязкость, превышающую 16 °ВУ, по формуле

ν=7,4⋅10−6Et,{displaystyle nu =7,4cdot 10^{-6}E_{t},}

где ν{displaystyle nu } — кинематическая вязкость (в м2/с), а Et{displaystyle E_{t}} — условная вязкость (в °ВУ) при температуре t.

Закладка Постоянная ссылка.
1 ЗвездаНельзя так писать о ЛоганеЧто-то о новом Логане так себе написаноЛоган - супер машинаРено Логан лучше всех! (Пока оценок нет)
Загрузка...