Почему у самолета реактивный двигатель

Что такое тяга двигателя?

Тягой двигателей называют реактивную силу, которая проявляется газодинамическими силами, давлением и трением, приложенными к внутренним и внешним сторонам двигателя.

Тяги различаются на:

  • Внутренние (реактивные тяги), когда не учитывается внешнее сопротивление;
  • Эффективные, учитывающие внешнее сопротивление силовых установок.

Отправная энергия запасается на борту летательных или других аппаратов, оснащенных реактивными двигателями (химическим горючим, ядерным топливом), или может притекать снаружи (например, солнечная энергия).

Двухконтурный рд

Эти агрегаты имеют массу преимуществ перед турбореактивными. Например, значительно меньший расход топлива при той же мощности.

Но сам двигатель имеет более сложную конструкцию и больший вес.

Да и принцип работы двухконтурного реактивного двигателя немного другой. Воздух, захватываемый турбиной, частично сжимается и подается в первый контур на компрессор и на второй – к неподвижным лопастям. Турбина при этом работает в качестве компрессора низкого давления.

В первом контуре двигателя воздух сжимается и подогревается, а затем посредством компрессора высокого давления подается в камеру сгорания. Здесь происходит смесь с топливом и воспламенение. Образуются газы, которые подаются на турбину высокого давления, за счет чего и вращаются лопасти турбины, подающие, в свою очередь, вращательное движение на компрессор высокого давления.

Двухлопастные турбовинтовые двигатели

В этой разновидности турбовинтовых двигателей мощность турбин через понижающие редукторы направляется для вращения классических винтов. Наличие таких двигателей позволяет большим воздушным суднам осуществлять полеты с максимально приемлемыми скоростями и при этом расходовать меньшее количество авиатоплива. Нормальная крейсерская скорость у турбовинтовых воздушных суден может быть 600—800 км/ч.

Исторические факты

Идею использования реактивной тяги, которая позволила бы преодолеть силу притяжения Земли, выдвинул в 1903 году феномен российской науки – Циолковский. Он опубликовал целое исследование на данную тему, но оно не было воспринято серьезно. Константин Эдуардович, пережив смену политического строя, потратил годы трудов, чтобы доказать всем свою правоту.

Сегодня очень много слухов о том, что первым в данном вопросе был революционер Кибальчич. Но завещание этого человека к моменту публикации трудов Циолковского было погребено вместе с Кибальчичем. Кроме того, это был не полноценный труд, а лишь эскизы и наброски – революционер не смог подвести надежную базу под теоретические выкладки в своих работах.

История развития реактивных двигателей

Эволюция реактивных двигателей неразрывно связана с развитием авиации. На протяжении практически всей ее истории улучшение характеристик летательных аппаратов обеспечивалось главным образом непрерывным совершенствованием авиамоторов.

Первые самолеты были оснащены поршневыми двигателями, и подобная ситуация оставалась неизменной на протяжении нескольких десятилетий. Постепенно их конструкция улучшалась, возрастала мощность, уменьшался расход топлива. Но к середине 40-х годов прошлого века стало понятно, что поршневой двигатель самолета достиг своего предела, и для дальнейшего развития необходимы совершенно другие технологии и новые конструкторские решения.

Буквально за несколько десятилетий поршневые самолеты прошли впечатляющий путь: если первые аэропланы летали со скоростью 50 км/ч, то к середине Второй мировой войны они перешагнули рубеж в 700 км/ч. Однако дальнейшее повышение мощности вошло в противоречие с другими важнейшими характеристиками любого авиамотора – компактностью и массой. Второй преградой, мешавшей увеличению скорости поршневых самолетов, был его движитель – воздушный винт. Дело в том, что на больших скоростях начинается работать такое неприятное явление, как «эффект запирания», не позволяющее увеличить тягу даже при повышении мощности.

Попытки создания летательных аппаратов с реактивным двигателем предпринимались еще на заре авиации. В 1913 году французский инженер Лорен получил патент на конструкцию прямоточного реактивного двигателя (ПВРД). В 1921 году француз Максим Гийом создал проект двигателя, имевшего основные элементы современного воздушно-реактивного двигателя: камеру сгорания, компрессор и одну турбину, приводимую в движение выхлопными газами.

Интересовались изучением данной темы и в России. Важный вклад в развитие реактивного движения внесли Кибальчич, Жуковский, Мещерский, Циолковский. Последний сделал обоснование полета ракеты с жидкостным двигателем (ЖРД), а также описал многие особенности его конструкции.

В 1930 году англичанин Фрэнк Уиттл получил патент на конструкцию работоспособного турбореактивного двигателя, позже он основал компанию, создавшую первые британские РД. В 1935 году немецкий изобретатель Ганс фон Охайн разработал турбореактивный двигатель HeS, а в 1939 году в небо поднялся первый в мире летательный аппарат с ТРД.

Сейчас читают:  Установка и подключение электропроводки фаркопа своими руками, видео - Новый Logan

В СССР проект первого истребителя с ВРД был разработан конструктором Люлькой в 1943 году. Но он был «зарезан»: руководство советской авиационной отрасли не верило в перспективы таких моторов. Зато у германских конструкторов, работавших в области реактивного авиастроения и ракетной техники, подобных проблем со своим начальством не было.

В 1944 году немцы сумели наладить серийное производство истребителя-бомбардировщика с двумя ТРД Me.262 и реактивного бомбардировщика Arado Ar 234 Blitz. В конце войны немецкой промышленностью также был освоен выпуск пульсирующих воздушно-реактивных двигателей (ПуВРД), которыми оснащались самолеты-снаряды Фау-1.

После войны началась настоящая эра реактивной авиации: ведущие мировые державы занялись интенсивной разработкой ВРД. Уже в 1946 году был создан первый советский реактивный Як-15 на основе трофейных немецких двигателей Jumo-004, а через год в КБ Люльки появился отечественный турбореактивный ТР-1.

В 1947 году на вооружение был принят истребитель МиГ-15, оснащенный мотором РД-45. В середине 50-х годов началось серийное производство первого советского пассажирского реактивного самолета Ту-104. К этому времени СССР превратился в одного из лидеров в области авиационного моторостроения.

Как устроен реактивный двигатель?

Устройство реактивных двигателей довольно-таки простое и в то же время чрезвычайно сложное. Оно простое по принципу действия. Так, забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину. После чего он там начинает смешиваться с горючим и сгорать.

При всей простоте, на самом деле это целая наука, ведь в середине таких двигателей рабочий температурный режим может достигать более тысячи градусов по Цельсию. Одной из важнейших проблем в турбореактивном двигателестроении является создание неплавящихся деталей из металлов, которые сами поддаются плавлению.

Какими бывают реактивные моторы?

В настоящее время существует множество типов реактивных двигателей, поэтому классификация их довольно сложна.

Подобные силовые установки можно разделить на две большие группы:

Ракетный двигатель. Он несет все компоненты для создания рабочего тела, поэтому способен работать в любой среде, в том числе и безвоздушном пространстве.

Воздушно-реактивный двигатель (ВРД), использующий для движения смесь из атмосферного воздуха и продукты сгоревшего топлива.

Благодаря такому принципу работы ВРД имеет большие преимущества перед ракетными двигателями при использовании в пределах земной атмосферы. Любая ракета, кроме топлива, должна нести еще и окислитель, масса которого может в несколько раз превышать вес горючего.

В отдельную категорию следует выделить силовые установки, для работы которых используется ядерная или электрическая энергия. С точки зрения энергетической эффективности, химические ракеты уже достигли предела своих возможностей, поэтому для покорения далекого космоса человечеству придется использовать что-то другое.

ВРД можно разделить на две большие группы:

К первой категории относятся устройства, у которых двигатель и тепловая машина не совмещаются в одном агрегате – их условно можно назвать турбовинтовыми. У таких моторов мощность, вырабатываемая турбиной, заставляет вращаться лопасти винта. Именно он создает большую часть тяги (80-85%).

Во вторую группу входят следующие типы моторов:

  • турбореактивный (ТРД);
  • турбовентиляторный (ТРД с высокой степенью двухконтурности);
  • прямоточный;
  • ракетно-прямоточный;
  • пульсирующий воздушно-реактивный (ПуВРД).

Есть еще электродвигатели: асинхронный и синхронный реактивный. Они называются так, потому что их роторы вращаются за счет реакций сил магнитного притяжения, но это не имеет отношения к законам реактивного движения.

Кратко об истории реактивного двигателя

Считается, что реактивный двигатель изобрели Ганс фон Охайн и выдающийся немецкий инженер-конструктор Фрэнк Виттл. Первый патент на действующий газотурбинный двигатель получил именно Фрэнк Виттл в 1930 году. Тем не менее, первая рабочая модель была собрана собственно Охайном.

Отклоняемый вектор тяги

Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы – так регулируются и направляются непосредственно реактивные потоки.

Принцип работы реактивного двигателя

В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:

  • Первичное забирание воздуха;
  • Охлаждение в целом всего двигателя.

Лопатки турбин компрессоров производят сжатие воздуха приблизительно от 30 и более раз, совершают «проталкивания» его (нагнетание) в камеру сгорания (происходит генерирование рабочего тела). Вообще камеры сгорания выполняют к тому же и роли карбюраторов, производя смешивание топлива с воздухом.

Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах.

Сейчас читают:  Как определить тягу двигателя самолета

Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.

При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях – это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.

Реактивные двигатели снабжены соплами, через которые из них вовне с огромной скоростью вытекают накаленные газы, которые являются продуктами сгорания топлива. В некоторых двигателях газы оказываются в соплах сразу же после камер сгорания. Это относится, например, к ракетным или прямоточным двигателям.

Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания.

В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля).

Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс.

К аппаратам ВРД относятся:

  • Турбореактивные двигатели (ТРД);
  • Прямоточные воздушно-реактивные двигатели (ПВРД);
  • Пульсирующие воздушно-реактивные двигатели (ПуВРД);
  • Гиперзвуковые прямоточные воздушно-реактивные двигатели (ГПВРД).

В противоположность воздушно-реактивным двигателям все компоненты рабочих тел РД находятся на борту аппаратов, оснащенных ракетными двигателями. Отсутствие движителей, взаимодействующих с окружающей средой, а также присутствие всех составляющих рабочих тел на борту аппаратов делают ракетные двигатели пригодными для функционирования в космическом пространстве. Имеется также комбинация ракетных двигателей, представляющих собой некое совмещение двух основных разновидностей.

Принцип работы трд (турбореактивного двигателя) самолёта

Очень много самолётов оснащены двигателем ТРД. Если у вас ассоциация связана с самолетом — это шум, то знайте, что это шум производит двигатель из-за большого количества оборотов лопаток на вентиляторе или по технической терминологии входного устройства

Это тот самый двигатель про который пойдет речь. Выглядит страшно, не правда ли? Но если знать основы, то уже становится лучше.

Это схематический чертёж ТРД. Само «сердце» самолета состоит из: входного устройства, компрессора, камеры сгорания, турбины и реактивного сопла.

Принцип работы.

Воздух из атмосферы попадает в входное устройство, точнее лопатки вентилятора (входного устройства) движутся с такой скоростью, что воздух сам туда попадает(есть один из важных параметров. Это удельный расход воздуха) то есть этот термин удельный расход воздух гласит, что сколько килограммов воздуха пройдет через В.У. за 1 секунду. При запуске двигателя, В.У. так сильно затягивает воздух, что может затянуть и человека.

Прямоточные воздушно-реактивные двигатели

ПВРД – самый простой тип реактивного двигателя по своему устройству. В нем вообще нет движущихся частей. Повышенное давление, необходимое для работы, достигается за счет торможения встречного потока воздуха. Любой ПВРД состоит из трех компонентов:

В диффузоре уменьшается скорость потока воздуха и повышается его давление, затем в камере сгорания он нагревается за счет окисления топлива, после чего происходит расширение рабочего тела в сопле и возникает реактивная тяга. Существуют три вида ПВРД:

Дозвуковые ПВРД имеют очень низкий термический КПД, поэтому серийно в настоящее время не используются.

На сверхзвуковой скорости прямоточный двигатель весьма эффективен, при скорости в 3 Маха степень повышения давления вполне сравнимо с аналогичным показателем ТРД.

Гиперзвуковой прямоточный реактивный двигатель (ГПВРД) предназначен для полетов на скоростях выше 5 Махов. Сегодня созданием подобных силовых установок занимаются во многих странах мира, но они все еще остаются на уровне единичных прототипов.

Прямоточный реактивный двигатель неработоспособен на земле и малоэффективен на низких скоростях полета. Поэтому его нередко используют с различными разгонными устройствами: пороховыми ускорителями или же запуск ЛА с ПРВД производится с самолетов-носителей.

Отдельно следует упомянуть о ядерных прямоточных двигателях, разработка которых велась в 60-е и 70-е годы. Воздух в таких силовых установках нагревался за счет тепла работающего ядерного реактора, размещенного в камере сгорания. Американцы даже сумели построить подобное устройство и провели его огневые испытания. Однако дальше этого дело не пошло, и проект был закрыт.

Сейчас читают:  Замена лампы ближнего света на Рено Логан: фото и видео

Пульсирующие воздушно-реактивные двигатели

ПуВРД – это один из первых типов реактивных моторов, использование которых началось еще во время Второй мировой войны. Гитлеровцы устанавливали их на крылатые ракеты Фау-1, применявшиеся для обстрелов Британии.

У пульсирующего реактивного двигателя тяга образуется не постоянно, а в виде серии импульсов, следующих с определенной частотой. Он состоит из диффузора, камеры сгорания и цилиндрического сопла. Между камерой сгорания и диффузором установлен специальный клапан. Цикл работы ПуВРД выглядит следующим образом:

  1. Клапан открыт, и воздух свободно поступает в камеру сгорания. Одновременно происходит впрыск топлива;
  2. Топливно-воздушная смесь поджигается – давление резко повышается и закрывает клапан. Рабочее тело истекает из сопла, образуя реактивную тягу;
  3. Давление в камере сгорания падает, клапан в диффузоре под напором входящего воздуха открывается. Цикл начинается сначала.

Пульсирующий характер работы ПуВРД делает его менее эффективным по сравнению с двигателями с постоянным процессом горения. Такие моторы шумны и неэкономичны, зато очень просты и дешево стоят. В настоящее время ПуВРД используются мало: их устанавливают на БПЛА, летающие мишени, также они нашли свое применение в авиамоделировании.

Не будет преувеличением сказать, что создание реактивного двигателя подарило человечеству небо. Благодаря этому устройству самолет превратился из орудия войны в массовый вид транспорта, которым ежегодно пользуются сотни миллионов человек. Однако история реактивного двигателя отнюдь не закончена.

Реактивный двигатель: мотор, подаривший людям небо

Мы живем в эпоху реактивной авиации – это знакомо любому, даже не слишком сведущему в технических вопросах, человеку. Поршневой мотор с традиционным винтом, хотя и не совсем канул в Лету, но лидирующие позиции он сдал давным-давно. Подавляющее большинство современных самолетов – пассажирских, транспортных и военных – оснащены различными типами реактивных двигателей. Именно благодаря моторам подобно конструкции авиация превратилась в удобный, массовый и быстрый вид транспорта.

Реактивный двигатель (РД) – это двигатель, создающий силу тяги путем преобразования внутренней энергии топлива в кинетическую рабочего тела. Оно истекает из сопла со значительной скоростью, и, согласно закону сохранения импульса, толкает его в противоположную сторону.

Это и есть принцип работы реактивного двигателя. Особенностью РД является его сочетание с движителем, усилие тяги он создает только за счет контакта с рабочим телом, без опоры или взаимодействия с иными объектами. Первым прототипом РД можно назвать шар Герона, созданный еще в I веке н. э.

В наши дни основной областью применения реактивного двигателя является авиация и ракетостроение, но не только. Их пытались устанавливать на поезда и автомобили, правда, широкого распространения такие транспортные средства так и не получили. Турбины используются при перекачке природного газа, причем многие из подобных агрегатов разработаны на базе авиационных ВРД и имеют аналогичный принцип действия.

В данном материале мы подробно коснемся конструкции устройств, относящихся к реактивным двигателям. Рассмотрим, как работает реактивный двигатель, представим их классификацию, а также основные особенности применения.

Турбовентиляторные реактивные двигатели

Эта разновидность двигателей является более экономичной в семействе двигателей классических типов. Главной отличительной характеристикой в них является то, что на входе ставятся вентиляторы больших диаметров, которые подают воздушные потоки не только для турбин, но и создают довольно-таки мощные потоки вне их.

Турбореактивный мотор

Принцип работы реактивного двигателя самолета основан на той же реактивной силе и тех же законах физики. Самая важная часть – это лопасти турбины. От размеров лопасти зависит итоговая мощность.

Именно благодаря турбинам вырабатывается тяга, которая нужная для ускорения самолетов. Каждая из лопастей в десять раз мощнее обыкновенного автомобильного ДВС. Турбины установлены после камеры сгорания там, где наиболее высокое давление. А температура здесь может достигать полутора тысяч градусов.

Закладка Постоянная ссылка.
1 ЗвездаНельзя так писать о ЛоганеЧто-то о новом Логане так себе написаноЛоган - супер машинаРено Логан лучше всех! (1 оценок, среднее: 4,00 из 5)
Загрузка...