Содержание
Что такое плата защиты?
Плата защиты (или PCB — power control board) предназначена для защиты от короткого замыкания, перезаряда и переразряда литиевой батареи. Как правило в модули защиты также встроена и защита от перегрева.
В целях соблюдения техники безопасности запрещено использование литиевых аккумуляторов в бытовых приборах, если в них не встроена плата защиты. Поэтому во всех аккумуляторах от сотовых телефонов всегда есть PCB-плата. Выходные клеммы АКБ размещены прямо на плате:
В этих платах используется шестиногий контроллер заряда на специализированной микрухе DW01 (JW01, JW11, K091, G2J, G3J, S8210, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.
Вот, например, схема платы защиты от аккумулятора BP-6M, которыми снабжались старые нокиевские телефоны:
Аккумуляторы без PCB-модуля обычно входят в состав батарей, комплектуемых собственными схемами защиты.
Любой аккумулятор с защитой легко превращается в аккумулятор без защиты, достаточно просто распотрошить его.
Не стоит путать PCB-плату с PCM-модулем (PCM — power charge module). Если первые служат только целям защиты аккумулятора, то вторые предназначены для управления процессом заряда — ограничивают ток заряда на заданном уровне, контролируют температуру и, вообще, обеспечивают весь процесс. PCM-плата — это и есть то, что мы называем контроллером заряда.
Надеюсь, теперь не осталось вопросов, как зарядить аккумулятор 18650 или любой другой литиевый? Тогда переходим к небольшой подборке готовых схемотехнических решений зарядных устройств (тех самых контроллеров заряда).
Lifepo4 аккумулятор в автомобиле
Литиевые аккумуляторные батареи чувствительны к величине тока и напряжения зарядки. Несоблюдение рекомендованных значений сокращает срок службы ячеек, уменьшает их емкость и может даже разрушить, причинив много дорогостоящих повреждений.
Источник зарядки аккумуляторов в автомобиле – это генератор двигателя. Стандартный регулятор автомобильного генератора настроен на 14,0-14,4 Вольта, что позволяет быстро заряжать стартовый аккумулятор и защищает его от сульфатации. Небольшой перезаряд для свинцово-кислотного аккумулятора не страшен, поэтому напряжение остается постоянным в течении всего времени работы двигателя.

14,4 Вольта подходит и для заряда LiFePO4 аккумуляторов. Но заряженный на 100% литиевый аккумулятор не должен постоянно находится под таким напряжением. Оно опасно для батареи и может повредить ее во время продолжительной поездки.
Несовместимость между зарядным напряжением и требованиями LiFePO4 аккумулятора возрастает еще сильнее на автомобилях с двигателями Euro 5/6 . Напряжение на «интеллектуальном» генераторе во время движения колеблется от 12 до 16 Вольт, а значит прежде чем заряжать LiFePO4 аккумулятор напряжение нужно как-то выровнять. Необходимо промежуточное устройство, связывающее BMS аккумулятора с системой зарядки автомобиля.

Задача буферного устройства обеспечить литиевый АКБ правильными профилями напряжения и тока. BMS же позаботится о безопасности ячеек и предотвратит неисправности, которые могут возникнуть. Промежуточное устройство – это управляемый микропроцессором DC-DC конвертер.
Он поддерживает на выходе заданное стабильное напряжение и при слишком высоком, и при слишком низком напряжении генератора. Конвертер не только заряжает LiFePO4 аккумулятор по правильному алгоритму, но и ограничивает ток, не давая мощному автомобильному генератору повредить аккумуляторную батарею.
Модель | BBW1212 | BB1230 | BB1260 |
![]() | ![]() | ![]() | |
Максимальный ток, А | 28 | 30 | 60 |
Входное напряжение, В | 12 | 12 | 12 |
Выходное напряжение, В | 12 | 12 | 12 |
Тип аккумуляторов | LiFePO4, а так же GEL, AGM, жидкий электролит. Всего 6 режимов зарядки | LiFePO4, а так же GEL, AGM, жидкий электролит. Всего 9 режимов зарядки | LiFePO4, а так же GEL, AGM, жидкий электролит. Всего 9 режимов зарядки |
Вес, кг | 3,5 | 1,2 | 1,4 |
Размеры, мм | 190 х 160 х 50 | 190 х 160 х 50 | 190 х 160 х 70 |
ЗАКАЗАТЬ | ЗАКАЗАТЬ | ЗАКАЗАТЬ |
Lm317
Схема простого зарядного устройства на основе микросхемы LM317 с индикатором заряда:
Схема простейшая, вся настройка сводится к установке выходного напряжения 4.2 вольта с помощью подстроечного резистора R8 (без подключенного аккумулятора!) и установке тока заряда путем подбора резисторов R4, R6. Мощность резистора R1 — не менее 1 Ватт.
Как только погаснет светодиод, процесс заряда можно считать оконченным (зарядный ток до нуля никогда не уменьшится). Не рекомендуется долго держать аккумулятор в этой зарядке после того, как он полностью зарядится.
Микросхема lm317 широко применяется в различных стабилизаторах напряжения и тока (в зависимости от схемы включения). Продается на каждом углу и стоит вообще копейки (можно взять 10 шт. всего за 55 рублей).
LM317 бывает в разных корпусах:
Аналогами микросхемы LM317 являются: GL317, SG31, SG317, UC317T, ECG1900, LM31MDT, SP900, КР142ЕН12, КР1157ЕН1 (последние два — отечественного производства).
Зарядный ток можно увеличить до 3А, если вместо LM317 взять LM350. Она, правда, подороже будет — 11 руб/шт.
Печатная плата и схема в сборе приведены ниже:
Старый советский транзистор КТ361 можно заменить на аналогичный p-n-p транзистор (например, КТ3107, КТ3108 или буржуйские 2N5086, 2SA733, BC308A). Его можно вообще убрать, если индикатор заряда не нужен.
Недостаток схемы: напряжение питания должно быть в пределах 8-12В. Это связано с тем, что для нормальной работы микросхемы LM317 разница между напряжением на аккумуляторе и напряжением питания должна быть не менее 4.25 Вольт. Таким образом, от USB-порта запитать не получится.
Ltc4054 (stc4054)
Очень простая схема, отличный вариант! Позволяет заряжать током до 800 мА (см. описание микросхемы). Правда, она имеет свойство сильно нагреваться, но в этом случае встроенная защита от перегрева снижает ток.
Один из вариантов печатной платы доступен по этой ссылке. Плата рассчитана под элементы типоразмера 0805.
Ток заряда (в амперах) рассчитывается по формуле I=1000/R. Сразу большой ток выставлять не стоит, сначала посмотрите, насколько сильно будет греться микросхема. Я для своих целей взял резистор на 2.7 кОм, при этом ток заряда получился около 360 мА.
Радиатор к этой микросхеме вряд ли получится приспособить, да и не факт, что он будет эффективен из-за высокого теплового сопротивления перехода кристалл-корпус. Производитель рекомендует делать теплоотвод «через выводы» — делать как можно более толстые дорожки и оставлять фольгу под корпусом микросхемы. И вообще, чем больше будет оставлено «земляной» фольги, тем лучше.
Кстати говоря, бОльшая часть тепла отводится через 3-ю ногу, так что можно сделать эту дорожку очень широкой и толстой (залить ее избыточным количеством припоя).
Корпус микросхемы LTC4054 может иметь маркировку LTH7 или LTADY.
LTH7 от LTADY отличаются тем, что первая может поднять сильно севший аккумулятор (на котором напряжение меньше 2.9 вольт), а вторая — нет (нужно отдельно раскачивать).
Микросхема вышла очень удачной, поэтому имеет кучу аналогов: STC4054, MCP73831, TB4054, QX4054, TP4054, SGM4054, ACE4054, LP4054, U4054, BL4054, WPM4054, IT4504, Y1880, PT6102, PT6181, VS6102, HX6001, LC6000, LN5060, CX9058, EC49016, CYT5026, Q7051. Прежде, чем использовать какой-либо из аналогов, сверяйтесь по даташитам.
Max1555 или max1551
MAX1551/MAX1555 — специализированные зарядные устройства для Li аккумуляторов, способные работать от USB или от отдельного адаптера питания (например, зарядника от телефона).
Подробное описание этих микросхем от производителя — datasheet.
Максимальное входное напряжение от DC-адаптера — 7 В, при питании от USB — 6 В. При снижении напряжения питания до 3.52 В, микросхема отключается и заряд прекращается.
Микросхема сама детектирует на каком входе присутствует напряжение питания и подключается к нему. Если питание идет по ЮСБ-шине, то максимальный ток заряда ограничивается 100 мА — это позволяет втыкать зарядник в USB-порт любого компьютера, не опасаясь сжечь южный мост.
При питании от отдельного блока питания, типовое значение зарядного тока составляет 280 мА.
В микросхемы встроена защита от перегрева. Но даже в этом случае схема продолжает работать, уменьшая ток заряда на 17 мА на каждый градус выше 110°C.
Имеется функция предварительного заряда (см. выше): до тех пор пока напряжение на аккумуляторе находится ниже 3В, микросхема ограничивает ток заряда на уровне 40 мА.
Микросхема имеет 5 выводов. Вот типовая схема включения:
Если есть гарантия, что на выходе вашего адаптера напряжение ни при каких обстоятельствах не сможет превысить 7 вольт, то можно обойтись без стабилизатора 7805.
Вариант зарядки от USB можно собрать, например, на такой печатной плате.
Микросхемы не нуждается ни во внешних диодах, ни во внешних транзисторах. Вообще, конечно, шикарные микрухи! Только они маленькие слишком, паять неудобно. И еще стоят дорого (посмотреть на цены и афигеть).
Mcp73831
Микросхема позволяет создавать правильные зарядные устройства, к тому же она дешевле, чем раскрученная MAX1555.даташита:
Важным достоинством схемы является отсутствие низкоомных мощных резисторов, ограничивающих ток заряда. Здесь ток задается резистором, подключенным к 5-ому выводу микросхемы. Его сопротивление должно лежать в диапазоне 2-10 кОм.
Зарядка в сборе выглядит так:
Микросхема в процессе работы неплохо так нагревается, но это ей вроде не мешает. Свою функцию выполняет.
Вот еще один вариант печатной платы с smd светодиодом и разъемом микро-USB:
Зарядка lifepo4 аккумуляторов
LiFePO4 аккумуляторы заряжают постоянным током, постоянным напряжением либо комбинацией этих двух методов. При двухступенчатой зарядке напряжение сначала повышают постоянным током до 14,4-14,6 Вольт, а затем при постоянном напряжении происходит насыщение аккумулятора. Один этап зарядки позволяет аккумулятору набрать примерно 90- 95% емкости, два — 100%.
Характеристики типичной литий-железо-фосфатной аккумуляторной батареи:
Характеристика | Значение |
Номинальная емкость, Ач | 125 |
Минимальная емкость, Ач | 119 |
Электрическая энергия, кВтч | 1,6 |
Номинальное напряжение, В | 12,8 |
Выходное напряжение, В | >12,8 |
Внутреннее сопротивление, мОм | <20> |
Последовательное/параллельное соединение | Последовательно до 4 аккумуляторов. Параллельно не ограничено |
Максимальное напряжение зарядки, В | 14,6 ± 0,1 |
Поддерживающее напряжение, В | 13,8± 0,2 |
Стандартный зарядный ток, А | 60 |
Максимальный зарядный ток, А | 80 |
Стандартный разрядный ток, А | 80 |
Максимальный разрядный ток, А | 100 в течении 30 минут |
Габариты, мм (Д х Ш х В) | 318 х 165 х 215 |
Вес, кг | 14,7 |
Характеристика | Значение |
Защитное напряжение при перезаряде, В/яч | 3,8± 0,025 |
Пороговое напряжение для сброса защиты при переразряде, В/яч | 3,6± 0,025 |
Порядок отключения защиты | Напряжение ниже порогового |
Защитное напряжение при переразряде, В/яч | 2,0± 0,08 |
Пороговое напряжение для сброса защиты при переразряде, В/яч | 2,3± 0,1 |
Порядок отключения защиты | Зарядка выше порогового напряжения |
Защита от перегрузки по току, А | 350 |
Задержка срабатывания защиты, с | 0,5-1,5 |
Порядок отключения защиты | Сброс нагрузки до допустимого значения |
Защита от перегрева, С | 65± 5 |
Сброс защиты при перегреве, С | 50± 10 |
Как выбрать литиевый акб в автомобиль
Чтобы полностью использовать в автомобиле возможности LiFePO4 аккумулятора, нужно хорошо понимать как он будет эксплуатироваться и с какой нагрузкой ему предстоит работать. При создании электрической системы, работающей от дополнительного аккумулятора необходимо обращать внимание на следующее

BMS, рассчитанная на высокий ток. Непрерывный ток разряда и заряда аккумулятора должен быть 0,5 — 1C . Необходимо смотреть именно на непрерывный, а не максимальный рейтинг аккумулятора. Максимальное значение бессмысленно, если не указывается время в течении которого проводилось испытание.
Стоимость. Один литиевый аккумулятор может быть почти в два раза дороже другого. Если это так, то очевидно, что в технологии изготовления и в способах использования аккумуляторов существуют различия. Однако нет смысла устанавливать дорогую модель, если более дешевая справится со своими задачами. Важно понять, что для вашей системы имеет решающее значение.
Максимальная скорость зарядки — одна из важных характеристик литиевого аккумулятора. У дешевых моделей ток зарядки может составлять всего 0,3C (30 А для аккумулятора емкостью 100 Aч). У дорогих — 1С или 100 А для аккумулятора той же емкости.
Если необходимо максимально быстро заряжать единственный аккумулятор, потребуется модель рассчитанная на высокий ток. Но если в автомобиле есть место, то два менее дорогих аккумулятора так же дадут возможность использовать ток силой 100 А, скорость зарядки снизится, но зато емкость батареи увеличится до 200 Ач.

Время работы аккумулятора без подзарядки. В отличии от свинцово-кислотного у литиевого аккумулятора доступно 100% емкости. Параллельно можно соединять любое количество аккумуляторов. При последовательном соединении менее дорогие модели часто имеют ограничение в 48 В
Мощность получаемая от генератора. Эта характеристика влияет как на емкость литиевой батареи, так и на выбор зарядного устройства. Современные автомобильные генераторы имеют мощность около 2000 Вт. Если в автомобиле есть место только для одного дополнительного аккумулятора емкостью 100 Ач, то для его зарядки подойдет устройство номиналом 30 А.
С его помощью генератор сможет заряжать дополнительный аккумулятор током примерно 25 А и будет передавать аккумуляторам 350 Вт. Модель, номиналом 60 А, увеличит передаваемую мощность до 800 Вт. Для аккумулятора емкостью 100 Ач с максимальным током 0,5С этого окажется достаточно
Использовать в автомобиле дорогой LiFePO4 аккумулятор выгодно, когда все три параметра — мощность генератора, номинал зарядного устройства и допустимый ток зарядки аккумуляторов соответствуют друг другу. Например, если мощность автомобильного генератора 1400 Вт, а номинал зарядного устройства 120 А, то для аккумуляторной батареи емкостью 100 Ач с рейтингом 0,5С зарядный ток окажется недопустимо высоким. Но для аккумулятора с рейтингом 1С выбранное оборудование вполне подойдет.
Какими бывают литиевые аккумуляторы
В зависимости от того, из какого материала изготовлен положительный электрод литиевого аккумулятора, существует их несколько разновидностей:
- с катодом из кобальтата лития;
- с катодом на основе литированного фосфата железа;
- на основе никель-кобальт-алюминия;
- на основе никель-кобальт-марганца.
У всех этих аккумуляторов имеются свои особенности, но так как для широкого потребителя эти нюансы не имеют принципиального значения, в этой статье они рассматриваться не будут.
Также все li-ion аккумуляторы производят в различных типоразмерах и форм-факторах. Они могут быть как в корпусном исполнении (например, популярные сегодня 18650) так и в ламинированном или призматическом исполнении (гель-полимерные аккумуляторы). Последние представляют собой герметично запаянные пакеты из особой пленки, в которых находятся электроды и электродная масса.
Наиболее распространенные типоразмеры li-ion аккумуляторов приведены в таблице ниже (все они имеют номинальное напряжение 3.7 вольта):
Обозначение | Типоразмер | Схожий типоразмер |
---|---|---|
XXYY0, где XX – указание диаметра в мм, YY – значение длины в мм, – отражает исполнение в виде цилиндра | 10180 | 2/5 AAA |
10220 | 1/2 AAA (Ø соответствует ААА, но на половину длины) | |
10280 | ||
10430 | ААА | |
10440 | ААА | |
14250 | 1/2 AA | |
14270 | Ø АА, длина CR2 | |
14430 | Ø 14 мм (как у АА), но длина меньше | |
14500 | АА | |
14670 | ||
15266, 15270 | CR2 | |
16340 | CR123 | |
17500 | 150S/300S | |
17670 | 2xCR123 (или 168S/600S) | |
18350 | ||
18490 | ||
18500 | 2xCR123 (или 150A/300P) | |
18650 | 2xCR123 (или 168A/600P) | |
18700 | ||
22650 | ||
25500 | ||
26500 | С | |
26650 | ||
32650 | ||
33600 | D | |
42120 |
Внутренние электрохимические процессы протекают одинаково и не зависят от форм-фактора и исполнения АКБ, поэтому все, сказанное ниже, в равной степени относится ко всем литиевым аккумуляторам.
Система управления аккумулятором
Литий-железо-фосфатные ячейки безопасно работают в диапазоне от 2 до 4,2 Вольт. По сравнению с другими типами литиевых элементов они более устойчивы к перенапряжению. Тем не менее, приложенное в течении продолжительного времени повышенное напряжение приводит к образованию металлического лития на аноде и навсегда ухудшает рабочие характеристики аккумулятора. Материал катода окисляется и становится менее стабильным, а выделяющийся диоксид углерода повышает давление в ячейках.

Система управления ограничивает максимальное напряжение каждого элемента и аккумуляторной батареи в целом. Защита срабатывает, если напряжение ячейки превышает 3,8 Вольт, а напряжение всего аккумулятора 15,2-15,6 Вольт.
Разряд аккумулятора ниже определенного уровня также недопустим. При напряжении ячейки меньше 2,0 В материал электродов начинает разрушаться, поэтому минимально рекомендуемое напряжение для большинства аккумуляторов 10,5-11,0 Вольт.
Система управления предохраняет литиевый аккумулятор от перезарядки, чрезмерного разряда и короткого замыкания. Но полагаться на одну только BMS нельзя. Первым уровнем защиты должно стать зарядное устройство и подключаемое к аккумуляторной батарее оборудование