Как вывести формулу момента инерции

Физические основы механики

Движение материальной точки характеризуется перемещением, скоростью, ускорением. Но при вращении твердого тела все его элементы имеют разные перемещения, различные скорости. Удобно найти переменные, одинаковые для всех элементов твердого тела. Мы их, собственно, уже знаем — угол поворота, угловая скорость, угловое ускорение. Соответственно, изучая динамику вращения, вместо импульса и силы мы будем оперировать их угловыми аналогами — моментом импульса и моментом силы.

Уравнение движения. В теме 4.8 было выведено уравнение движения системы материальных точек в виде

Как вывести формулу момента инерции

где моменты импульса и силы определялись как

Как вывести формулу момента инерции

Внутренние силы между телами системы, напомним, выпали из уравнений движения. Абсолютно твердое тело можно рассматривать как систему частиц (материальных точек) с неизменными расстояниями между ними. Поэтому выписанные уравнения применимы для твердого тела, а неизменность расстояний между его точками позволяет характеризовать вращение тела вокруг неподвижной оси единственной координатой — углом поворота. Поэтому мы можем упростить приведенное выше уравнение движения. Прежде всего, нас не интересуют в данный момент напряжения, возникающие в оси. Кроме того, для описания вращения достаточно рассмотреть проекции векторов моментов импульса и силы на ось вращения.

Как вывести формулу момента инерции

Рис. 7.1. Момент импульса L двух шаров массы m, соединенных стержнем. Вся система вращается вокруг оси z c угловой скоростью ω

Направим ось z вдоль оси вращения и выделим в твердом теле элемент массой Как вывести формулу момента инерции, положение которого характеризуется радиус-вектором Как вывести формулу момента инерции (рис. 7.2).

Как вывести формулу момента инерции

Рис. 7.2 Вращение твердого тела вокруг неподвижной оси 0z

Момент импульса этого элемента есть

Как вывести формулу момента инерции

Рис. 7.3. Момент импульса системы направлен вдоль оси вращения.

Радиус-вектор Как вывести формулу момента инерции можно представить как сумму его проекций на ось z и плоскость ху :

Как вывести формулу момента инерции

где вектор Как вывести формулу момента инерции лежит в плоскости вращения и направлен от оси к выделенному элементу (см. рис. 7.1). Имеем:

Как вывести формулу момента инерции

Первое слагаемое — вектор, направленный противоположно Как вывести формулу момента инерции Поэтому оно не дает вклада в z-компоненту момента импульса. Второе слагаемое — вектор, направленный вдоль оси z. Так как

Как вывести формулу момента инерции

и

Как вывести формулу момента инерции

можем написать:

Как вывести формулу момента инерции

Суммируя по всем элементам тела, получаем

Как вывести формулу момента инерции

где

Как вывести формулу момента инерции

Величина Как вывести формулу момента инерции называется моментом инерции тела.

Говоря о моменте инерции, всегда указывают, относительно какой именно оси вращения он определен (в данном случае — это ось z). Момент инерции того же тела относительно какой-то другой оси примет иное значение. Сохраняется только общее правило его вычисления: берется сумма по элементам массы, составляющим тело, умноженным на квадраты расстояний этих элементов массы до оси вращения.

В случае непрерывного распределения масс с плотностьюКак вывести формулу момента инерции сумма заменится на интеграл по всему объему тела:

Как вывести формулу момента инерции

Если тело однородно, то его плотность во всех точках постоянна и Как вывести формулу момента инерции можно вынести из-под знака интеграла.

Записываем теперь уравнение движения в проекции на ось z :

Как вывести формулу момента инерции

Если момент инерции не зависит от времени, то дифференцировать нужно только угловую скорость, в результате получаем основное уравнение динамики вращательного движения твердого тела в виде

Как вывести формулу момента инерции

Производная угловой скорости по времени — это угловое ускорение

Как вывести формулу момента инерции

Видео 7.1. Основное уравнение динамики вращательного движения. Демонстрация, вытекающей из него связи между угловым ускорением, моментом силы и моментом инерции

Рассмотрим теперь момент внешних сил. Разложим силу Как вывести формулу момента инерции на вектор в направлении оси z и вектор, ей ортогональный:

Как вывести формулу момента инерции

Используя снова аналогичное разложение радиус-вектора

Как вывести формулу момента инерции

получаем для момента внешних сил Как вывести формулу момента инерции:

Как вывести формулу момента инерции

Первое слагаемое равно нулю. Два следующих содержат единичный орт — вектор k, направленный вдоль оси 0z и, следовательно, не дают вклада в проекцию Как вывести формулу момента инерции. Оба вектора

Как вывести формулу момента инерции

лежат в плоскости xy и, следовательно, последнее слагаемое направлено параллельно оси 0z. Если Как вывести формулу момента инерции — угол между этими векторами, то

Как вывести формулу момента инерции

где Как вывести формулу момента инерции — плечо силы (см. тему. 4.8). Силу

Как вывести формулу момента инерции

надо здесь понимать в алгебраическом смысле: она входит со знаком минус, если сила тормозит вращение.

Момент инерции. Найдем моменты инерции для простейших (геометрически правильных) форм твердого тела, масса которого равномерно распределена по объему.

Как вывести формулу момента инерции

Рис. 7.4. Моменты инерции различных тел

1. Момент инерции обруча относительно оси, перпендикулярной к его плоскости и проходящей через его центр.

Обруч считается бесконечно тонким, то есть толщиной обода можно пренебречь по сравнению с радиусом Как вывести формулу момента инерции. Поскольку в этой системе все массы находятся на одинаковом расстоянии от оси вращения, Как вывести формулу момента инерции можно вынести из-под знака интеграла:

Как вывести формулу момента инерции

где Как вывести формулу момента инерции — полная масса обруча.

2. Момент инерции диска относительно оси, перпендикулярной его плоскости и проходящей через центр.

Диск считается бесконечно тонким, если его толщина много меньше радиуса Как вывести формулу момента инерции. Момент инерции, согласно определению, величина аддитивная: момент инерции целого тела равен сумме моментов инерции его частей. Разобьем диск на бесконечно тонкие обручи радиусом Как вывести формулу момента инерции и шириной Как вывести формулу момента инерции (рис. 7.5).

Как вывести формулу момента инерции

Рис. 7.5 Вычисление момента инерции диска относительно оси z, перпендикулярной его плоскости и проходящей через центр

Площадь поверхности обруча равна произведению его длины окружности на ширину: Как вывести формулу момента инерции. Поскольку масса m диска распределена равномерно, масса единицы площади равна Как вывести формулу момента инерции, так что масса обруча равна

Как вывести формулу момента инерции

Момент инерции обруча мы уже знаем:

Как вывести формулу момента инерции

Осталось просуммировать моменты инерции всех таких обручей:

Как вывести формулу момента инерции

Такой же результат получится и для момента инерции цилиндра конечной длины относительно его продольной оси.

3. Момент инерции шара относительно его диаметра.

Поступим аналогичным образом: «нарежем» шар на бесконечно тонкие диски толщиной Как вывести формулу момента инерции, находящиеся на расстоянии z от центра (рис. 7.6).

Как вывести формулу момента инерции

Рис. 7.6. Момент инерции шара относительно его диаметра

Радиус такого диска

Как вывести формулу момента инерции

Объем диска Как вывести формулу момента инерции равен его площади, умноженной на толщину:

Как вывести формулу момента инерции

Массу диска Как вывести формулу момента инерции находим, разделив массу шара Как вывести формулу момента инерции на его объем Как вывести формулу момента инерции и умножив на объем диска:

Как вывести формулу момента инерции

Момент инерции диска был найден выше. В применении к данному случаю он равен

Как вывести формулу момента инерции

Момент инерции шара находится интегрированием по всем таким дискам:

Как вывести формулу момента инерции

4. Момент инерции тонкого стержня относительно оси, проходящей через его середину перпендикулярно стержню.

Пусть стержень имеет длину Как вывести формулу момента инерции. Направим ось x вдоль стержня. Начало координат по условию находится в центре стержня (рис. 7.7).

Как вывести формулу момента инерции

Рис. 7.7. Момент инерции тонкого стержня относительно оси, проходящей через его середину перпендикулярно стержню

Возьмем элемент стержня длиной Как вывести формулу момента инерции, находящийся на расстоянии x от оси вращения. Его масса равна

Как вывести формулу момента инерции

а момент инерции

Как вывести формулу момента инерции

Отсюда находим момент инерции стержня:

Как вывести формулу момента инерции

Теорема Штейнера. В приведенных примерах оси проходят через центр масс (центр инерции) тела. Момент инерции относительно других осей вращения определяется в соответствии с теоремой Штейнера:

Как вывести формулу момента инерции

Рис. 7.8. К выводу теоремы Штейнера

Продемонстрируем сначала применение теоремы Штейнера. Вычислим момент инерции тонкого стержня относительно оси, проходящей через его край перпендикулярно стержню. Прямое вычисление сводится к тому же интегралу, возникшему при вычислении момента инерции стержня относительно оси, проходящей через его середину, но взятому в других пределах:

Как вывести формулу момента инерции

Расстояние до оси, проходящей через центр масс, равно a = l/2. По теореме Штейнера получаем тот же результат:

Как вывести формулу момента инерции

Вывод теоремы Штейнера иллюстрируется рис. 7.8, 7.9

Как вывести формулу момента инерции

Рис. 7.9. К выводу теоремы Штейнера

Пусть одна ось проходит в направлении единичного вектора n через центр масс С твердого тела (системы тел), а другая — параллельно ей через некоторую точку . Из центра масс в направлении второй оси проводим ортогональный осям вектор a, который определяет положение точки . Радиус-векторы некоторого элемента системы массой Как вывести формулу момента инерции относительно точек С и обозначаем Как вывести формулу момента инерции и Как вывести формулу момента инерции, соответственно. Момент инерции этого элемента относительно оси С есть

Сейчас читают:  Убеждаемся в компромиссности кроссовера Renault Arkana TCe 150 — ДРАЙВ

Как вывести формулу момента инерции

где Как вывести формулу момента инерции — расстояние элемента от оси. По теореме Пифагора (см. рис. 7.9).

Как вывести формулу момента инерции

Катет Как вывести формулу момента инерции равен проекции векторов Как вывести формулу момента инерции и Как вывести формулу момента инерции на ось вращения, то есть

Как вывести формулу момента инерции

Используя эти выражения и суммируя по всем элементам системы, находим момент инерции относительно оси, проходящей через точку С, и, аналогичным образом, момент инерции относительно параллельной оси, проходящей через точку :

Как вывести формулу момента инерции

Здесь выражение для Как вывести формулу момента инерции получено из Как вывести формулу момента инерции простой заменой Как вывести формулу момента инерции на Как вывести формулу момента инерции.

Как видно из рис. 7.9, векторы Как вывести формулу момента инерции и Как вывести формулу момента инерции связаны между собой:

Как вывести формулу момента инерции

причем

Как вывести формулу момента инерции

так как векторы n и а ортогональны и их скалярное произведение

Как вывести формулу момента инерции

Тогда мы можем преобразовать выражение для Как вывести формулу момента инерции:

Как вывести формулу момента инерции

Первое слагаемое в правой части — момент инерции Как вывести формулу момента инерции относительно оси, проходящей через точку C. Третье слагаемое равно Как вывести формулу момента инерции, где

Как вывести формулу момента инерции

— полная масса системы.

Второе слагаемое равно нулю, так как оно пропорционально радиус-вектору центра инерции относительно самого центра инерции. Окончательно:

Как вывести формулу момента инерции

что и требовалось доказать.

Теорема Штейнера связывает моменты инерции относительно параллельных осей. Иногда оказывается полезной другая теорема, связывающая моменты инерции относительно трех взаимно перпендикулярных осей. Однако эта теорема относится только к плоским фигурам, толщиной которых можно пренебречь по сравнению с размерами в двух других направлениях. Итак, теорема о моментах инерции плоских фигур:

Если через произвольную точку плоской фигуры приведена ортогональная к фигуре ось, то момент инерции относительно этой оси равен сумме моментов инерции относительно двух взаимно перпендикулярных осей, лежащих в плоскости фигуры и проходящих через эту же точку .

Иными словами, берем на фигуре произвольную точку и проводим координатные оси так, чтобы 0x и 0y лежали в плоскости фигуры. Тогда, согласно теореме, момент инерции относительно оси 0z равен сумме моментов инерции относительно осей 0x и 0y:

Как вывести формулу момента инерции

При этом расположение осей 0x, 0y может быть произвольным; главное, чтобы они лежали в плоскости фигуры (рис. 7.10).

Как вывести формулу момента инерции

Рис. 7.10. Моменты инерции плоской фигуры относительно взаимно перпендикулярных осей

Из рисунка видно, что

Как вывести формулу момента инерции

что и требовалось доказать.

Найдем, например, момент инерции Как вывести формулу момента инерции диска относительно его диаметра. Два ортогональных диаметра диска равноправны, поэтому

Как вывести формулу момента инерции

Согласно теореме о плоской фигуре

Как вывести формулу момента инерции

откуда

Как вывести формулу момента инерции

Теперь можно применить теорему Штейнера, чтобы найти, например, момент инерции Как вывести формулу момента инерции относительно оси Как вывести формулу момента инерции, параллельной диаметру и проходящей через край диска (см. рис. 7.10):

Как вывести формулу момента инерции

Измеряем кинетическую энергию бочки, катящейся по наклонной плоскости

Итак, нам уже известно, что объекты могут двигаться поступательно и вращательно, причем двигаться так, что без знания строгих законов физики порой трудно понять их поведение. Да ну? Действительно, если бочка скользит вниз по наклонной плоскости, то ее потенциальная энергия превращается в кинетическую энергию поступательного движения (см. главу 8).

На рис. 11.4 показан случай, когда с наклонной плоскости высотой ​( h )​ скатываются сплошной и полый цилиндры с одинаковой массой ​( m )​. Какой цилиндр достигнет нижнего конца наклонной плоскости?

Иначе говоря: какой цилиндр будет обладать большей скоростью в конце наклонной плоскости? Поскольку действующие на цилиндры силы постоянны, то постоянны и их ускорения, а значит, большая скорость в конце пути означает меньшее время его прохождения. В случае только поступательного движения цилиндра и при отсутствии трения уменьшение потенциальной энергии ​( mgh )​ преобразуется в увеличение кинетической энергии только поступательного движения ​( {}^1!/!_2mv^2 )​, т.е.:

Однако в данном примере эта формула не годится, потому что цилиндры скатываются без проскальзывания. Это значит, что часть уменьшения потенциальной энергии будет преобразовываться в увеличение кинетической энергии поступательного движения ( {}^1!/!_2mv^2 ), а часть — в кинетическую энергию вращательного движения ( {}^1!/!_2Iomega ^2 ). Тогда предыдущее равенство принимает следующий вид:

Сделаем подстановку ​( omega=v/r )​ и получим:

Путем несложных алгебраических преобразований получим:

откуда легко получить выражение для скорости цилиндра:

Для обоих цилиндров все параметры одинаковы, кроме момента инерции ​( I )​. Как это повлияет на скорость цилиндров? Согласно данным из табл. 11.1, полый цилиндр имеет момент инерции ​( mr^2 )​, а сплошной — ​( {}^1!/!_2mr^2 )​.

Итак, для полого цилиндра получим:

а для сплошного цилиндра:

А их отношение равно:

Как видите, скорость сплошного цилиндра в 1,15 раза больше скорости полого цилиндра, а значит, сплошной цилиндр быстрее достигнет конца наклонной плоскости.

Как на пальцах объяснить полученный результат? Все очень просто. В полом цилиндре вся масса сосредоточена на расстоянии радиуса цилиндра, а в сплошном цилиндре значительная часть масса распределена ближе радиуса. Это значит, что при одинаковой угловой скорости в полом цилиндре больше материала будет обладать большей тангенциальной скоростью, а для этого потребуется потратить больше энергии.

Применяем второй закон ньютона для вращательного движения

Согласно второму закону Ньютона (см. главу 5), ускорение объекта под действием силы пропорционально величине силы и обратно пропорционально массе объекта:

где ​( mathbf{a} )​ — это вектор ускорения, ( mathbf{F} ) — вектор силы, а ​( m )​ — масса объекта. Подробнее о векторах рассказывается в главе 4. Соблюдается ли этот закон для вращательного движения?

В главе 10 мы уже познакомились характеристиками вращательного движения, которые являются эквивалентами (аналогами) некоторых характеристик поступательного движения. А как будет выглядеть аналог у второго закона Ньютона? Похоже, что во вращательном движении роль ускорения ( mathbf{a} ) играет угловое ускорение ( alpha ), а роль силы ( mathbf{F} ) — момент силы ( mathbf{M} )?

Не вдаваясь в подробности, скажем лишь, что это действительно так. А что же с массой? Оказывается, что для этого используется новое понятие — момент инерции ​( l )​. Известно, что второй закон Ньютона для вращательного движения принимает следующий вид:

Рассмотрим простой пример. Пусть привязанный нитью мячик для игры в гольф вращается по окружности, как показано на рис. 11.1. Допустим, что к мячику приложена направленная по касательной к окружности тангенциальная сила, которая приводит к увеличению тангенциальной скорости мячика.

Поскольку:

то, умножая обе части этой формулы на радиус окружности ​( r )​, получим:

Поскольку ​( rmathbf{F}=mathbf{M} )​ то

или

Таким образом, частично совершен переход от второго закона Ньютона для поступательного движения к его аналогу для вращательного движения. (Следует отметить, что это выражение справедливо для материальной точки, т.е. объекта, размерами которого можно пренебречь по сравнению с величиной радиуса окружности ​( r )​.

Работа при вращательном движении

Допустим, что инженеру в области автомобилестроения необходимо рассчитать параметры революционно новой шины колеса. Для начала он решил оценить работу, которую необходимо выполнить для ускоренного раскручивания этой шины. Как связать работу при поступательном движении и работу при вращательном движении?

Инженер предложил простую, как все гениальное, идею: “связать” шину веревкой. Точнее говоря, он предложил намотать веревку на шину, потянуть за веревку с помощью внешней силы и раскрутить шину. Так, приравнивая работу внешней силы при поступательном движении веревки и работу ускорения вращательного движения шины, можно, образно говоря, “связать” их веревкой.

Пусть шина имеет радиус ​( r )​ и для ее вращения используется сила ​( F )​, как показано на рис. 11.3.

Чему равна работа этой силы? Применим знакомую нам формулу:

где ​( s )​ — это перемещение веревки под действием этой силы. В данном примере перемещение ​( s )​ равно произведению радиуса ​( r )​ на угол поворота шины ​( theta )​:

Подставляя это выражение в формулу работы, получим:

Поскольку момент ​( M )​, создаваемой этой силой, равен:

то получаем для работы:

Таким образом, работа при вращательном движении равна произведению момента силы и угла поворота. Она измеряется в тех же единицах, что и работа при поступательном движении, т.е. в джоулях.

Сейчас читают:  Новый Рено Логан отзывы владельцев: все минусы, недостатки, плюсы

Учтите, что для описания вращательного движения в этих формулах работы угол нужно указывать в радианах.

Вот еще один пример. Пусть пропеллер самолета совершает 100 поворотов с постоянным моментом силы 600 Н·м. Какую работу выполняет двигатель самолета? Для ответа на этот вопрос начнем с уже известной нам формулы:

Полный оборот соответствует повороту на угол ​( 2pi )​. Подставляя значения в формулу, получим:

Что происходит с выполненной таким образом работой? Она преобразуется в кинетическую энергию вращательного движения.

Пример закона сохранения момента импульса: вычисляем скорость спутника

Предположим, что космический корабль вращается на эллиптической орбите вокруг Плутона. Причем в самой близкой к Плутону точке орбиты спутник находится на расстоянии 6·106 м от центра Плутона и имеет скорость 9·103 м/с. Вопрос: какой будет скорость спутника в самой далекой точке эллиптической орбиты на расстоянии 2·107 м от центра Плутона?

Для ответа на этот вопрос нужно воспользоваться законом сохранения момента импульса, поскольку на спутник не действуют никакие внешние моменты сил (сила гравитационного притяжения направлена параллельно радиусу и не создает момента). Однако закон сохранения момента импульса нужно преобразовать так, чтобы вместо угловых скоростей в его формулировке фигурировали тангенциальные скорости.

Итак, рассмотрим формулу закона сохранения момента импульса:

где ​( I_{бл} )​ — это момент инерции спутника в самой близкой точке, ( I_{дал} ) — это момент инерции спутника в самой далекой точке, ( omega_{бл} ) — угловая скорость спутника в самой близкой точке, а ( omega_{дал} ) — угловая скорость спутника в самой далекой точке.

Предположим, что размеры спутника гораздо меньше расстояния до центра Плутона и спутник можно считать материальной точкой. Тогда его моменты инерции равны:

где ​( r_{бл} )​ — это расстояние от спутника до центра Плутона в самой близкой точке эллиптической орбиты, а ( r_{дал} ) — это расстояние от спутника до центра Плутона в самой далекой точке эллиптической орбиты.

Кроме того:

Подставляя все перечисленные соотношения в формулу закона сохранения момента импульса

получим:

Отсюда путем несложных алгебраических преобразований, получим:

Подставляя значения, получим:

Итак, в ближайшей к Плутону точке орбиты спутник будет иметь скорость 9000 м/с, а в самой дальней — 2700 м/с. Этот результат мы легко получили только благодаря знанию закона сохранения момента импульса.

Изучаем кинетическую энергию вращательного движения

Из главы 8 нам уже известно, что объект массы ​( m )​, движущийся поступательно со скоростью ​( v )​, обладает кинетической энергией:

А как получить формулу кинетической энергии для вращающегося объекта? Нужно применить данную формулу для всех его частичек.

При описании вращательного движения аналогом массы является момент инерции, а аналогом скорости — угловая скорость.

Как известно (см. главу 10), тангенциальная скорость ​( v )​ и угловая скорость ​( omega )​ связаны соотношением:

где ​( r )​ — это радиус окружности вращения.

Подставляя это соотношение в предыдущую формулу, получим:

Однако эта формула справедлива только для бесконечно малой материальной точки. Чтобы определить кинетическую энергию протяженного объекта, нужно просуммировать кинетические энергии всех его мельчайших материальных точек, т.е. вычислить сумму:

Как можно было бы упростить эту формулу? Предположим, что все составляющие частички протяженного объекта вращаются с одинаковой угловой скоростью. Тогда угловую скорость можно вынести за знак суммирования и получим:

Здесь начинается самое интересное. Ранее в этой главе уже приводилась формула момента инерции:

Теперь совсем нетрудно сделать подстановку в предыдущей формуле кинетической энергии:

Итак, кинетическая энергия вращательного движения вычисляется аналогично кинетической энергии поступательного движения, если вместо массы использовать момент инерции, а вместо тангенциальной скорости — угловую скорость. Примеры кинетической энергии вращательного движения окружают повсюду.

Вычисляем момент инерции протяженного объекта

Момент инерции легко вычисляется для очень маленького (точечного) объекта, если все точки объекта расположены на одинаковом расстоянии от точки вращения. Например в предыдущем примере, если считать, что мячик для игры в гольф гораздо меньше длины нити, то все его точки находятся на одинаковом расстоянии от точки вращения, равном радиусу окружности вращения ​( r )​. В таком случае момент инерции имеет знакомый вид:

где ( r ) — это расстояние, на котором сосредоточена вся масса мячика ( m ).

Однако такая идеальная ситуация имеет место далеко не всегда. А чему равен момент инерции протяженного объекта, например стержня, вращающегося относительно одного из своих концов? Ведь его масса сосредоточена не в одной точке, а распределена по всей длине.

Например, момент инерции ​( l )​ системы из двух “точечных” мячиков для игры в гольф с одинаковой массой ​( m )​ на расстояниях ​( r_1 )​ и ​( r_2 )​ равен сумме их отдельных моментов инерции ​( l_1=mr_1^2 )​ и ( l_2=mr_2^2 ):

А как определить момент инерции диска, вращающегося относительно своего центра? Нужно мысленно разбить диск на множество материальных точек, вычислить момент инерции каждой такой точки и просуммировать полученные моменты инерции. Физики научились вычислять моменты инерции для многих объектов со стандартной формой. Некоторые из них приведены в табл. 11.1.

Попробуем вычислить моменты инерции нескольких предметов с простой геометрией.

Пример: замедление вращения компакт-диска

Компакт-диски могут вращаться с разными угловыми скоростями. Это необходимо для обеспечения одинаковой линейной скорости считывания информации на участках, находящихся на разных расстояниях от центра вращения. Пусть диск массой 30 г и диаметром 12 см сначала вращается со скоростью 700 оборотов в секунду, а спустя 50 минут — со скоростью 200 оборотов в секунду.

Момент инерции диска с радиусом ​( r )​, вращающегося относительно своего центра в плоскости диска, выражается формулой:

Подставляя значения, получим:

Теперь нужно определить угловое ускорение, которое определяется следующей формулой:

Изменение угловой скорости ​( Deltaomega )​ произошло за промежуток времени:

В данном примере изменение угловой скорости:

где ​( omega_1 )​ — конечная, а ( omega_0 ) — начальная угловая скорость компакт-диска.

Чему они равны? Начальная скорость 700 оборотов в секунду означает, что диск за секунду 700 раз проходит ​( 2pi )​ радиан:

Аналогично, конечная скорость 200 оборотов в секунду означает, что диск за секунду 200 раз проходит ( 2pi ) радиан:

Подставляя значения в формулу углового ускорения, получим:

Подставляя значения момента инерции и углового ускорения в итоговую формулу момента силы, получим:

Итак, средний момент равен 10-4 Н·м, а чему будет равна сила для создания такого момента, если она приложена к краю диска? Ее величину легко вычислить по следующей формуле:

Оказывается, для такого замедления компакт-диска нужно приложить не такую уж и большую силу.

Еще один пример: поднимаем груз

Вращательное движение порой внешне выглядит не так очевидно, как вращение ком- пакт-диска. Например подъем груза с помощью блока также является примером вращательного движения. Хотя канат и груз движутся поступательно, но сам блок вращается (рис. 11.2).

В данном примере нужно вычислить сумму всех моментов сил ​( mathbf{sum! M} )​, которые действуют на веревку:

В данном примере на веревку действует два момента сил: один ​( M_1 )​ со стороны груза весом ​( mg )​, а другой ( M_2 ) — со стороны горизонтальной силы ​( F )​:

Отсюда получаем формулу для углового ускорения:

Эти моменты ​( M_1 )​ и ( M_2 ) имеют одинаковое плечо, равное радиусу блока ​( r )​, поэтому:

Поскольку блок имеет форму диска, то из табл. 11.1 находим его момент инерции:

Подставляя выражения для ​( l )​, ​( M_1 )​ и ​( M_2 )​ в формулу для углового ускорения, получим:

Сейчас читают:  Как проверить модуль зажигания рено логан

Подставляя значения, получим:

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

Массу кольца можно представить в виде:

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Пример: вычисляем момент силы для обеспечения углового ускорения

Если на объект действует несколько сил, то второй закон Ньютона имеет следующий вид:

где ​( mathbf{sum!F} )​ обозначает векторную сумму всех сил, действующих на объект.

Аналогично, если на объект действует несколько моментов сил, то второй закон Ньютона имеет вид:

где ( mathbf{sum! M} ) обозначает векторную сумму всех моментов сил, действующих на объект. Аналог массы, т.е. момент инерции, измеряется в кг·м2.

Помните, что аналогом второго закона Ньютона при описании вращательного движения является формула ​( mathbf{sum! M}=lalpha )​, т.е. угловое ускорение прямо пропорционально сумме всех моментов сил, действующих на вращающийся точечный объект, и обратно пропорционально моменту инерции.

Пусть мячик из предыдущего примера (см. рис. 11.1) имеет массу 45 г, а длина нити равна 1 м. Какой момент сил необходимо приложить, чтобы обеспечить угловое ускорение — ​( 2pi с^{-2} )​? Подставляя значения в уже известную нам формулу

получим:

Как видите, для решения этой задачи достаточно было поступить, как при определении силы, необходимой для обеспечения ускорения поступательного движения (где нужно было бы умножить массу на ускорение), т.е. умножить угловое ускорение на момент инерции.

Не можем остановиться: момент импульса

Допустим, нам нужно остановить космический корабль с массой 40 т, который находится на околоземной орбите. Для этого потребуется затратить немалые усилия. Почему? Все дело во вращательном импульсе космического корабля.

В главе 9 подробно описывается понятие импульс материальной точки, который выражается следующей формулой:

где ​( m )​ — это масса, a ​( v )​ — скорость материальной точки.

По аналогии, при описании вращательного движения физики используют понятие вращательный импульс (который в русскоязычной научной литературе чаще называют моментом импульса материальной точки. — Примеч. ред.):

где ​( l )​ — это момент инерции, а ​( omega )​ — угловая скорость материальной точки.

Следует помнить, что момент импульса (или вращательный импульс) является вектором, направление которого совпадает с направлением вектора угловой скорости.

Момент импульса в системе СИ измеряется в кг·м2·с-1 (более подробно системы единиц измерения описываются в главе 2). Одним из наиболее важных свойств момента импульса является закон сохранения момента импульса.

Сохраняем момент импульса

Закон сохранения момента импульса гласит: момент импульса сохраняется, если равна нулю сумма всех моментов внешних сил. Этот закон проявляется во многих обыденных ситуациях. Например часто приходится видеть, как мастера фигурного катания на льду вращаются с широко разведенными в стороны руками, а затем резко приближают их к своему телу и сильно ускоряют свое вращение.

Дело в том, что таким образом они уменьшают свой момент инерции и, согласно закону сохранения момента импульса, увеличивают свою угловую скорость. Зная начальную угловую скорость вращения фигуриста ​( omega_0 )​ и его моменты инерции в позе с разведенными руками ​( I_0 )​ и в позе с сомкнутыми руками ​( I_1 )​, легко найти конечную угловую скорость ​( omega_1 )​ по формуле:

Однако этот закон удобно использовать не только в таких простых ситуациях. Возвращаясь к примеру с космическим кораблем на околоземной орбите, следует отметить, что его орбита далеко не всегда является строго круглой. Чаще всего орбиты спутников Земли и других планет имеют эллиптическую форму. Поэтому без закона сохранения момента импульса было бы гораздо сложнее определять параметры их орбитального движения.

Преобразуем тангенциальное ускорение в угловое

Чтобы полностью перейти от описания поступательного движения к описанию вращательного движения, необходимо использовать связь между угловым ускорением ​( alpha )​ и тангенциальным ускорением ​( mathbf{a} )​. Как нам уже известно из главы 10, они связаны следующим соотношением:

Подставляя это выражение в приведенную выше формулу

получим:

Итак, мы получили связь момента силы, действующей на материальную точку, и ее углового ускорения. Коэффициент пропорциональности между ними, ​( l=mr^2 )​, называется моментом инерции материальной точки.

Теорема штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Вычисляем энергию и работу при вращательном движении

При изучении поступательного движения в главе 8 мы познакомились с понятием работа. Она равна произведению силы на перемещение под действием этой силы. Можно ли выразить работу при вращательном движении на основе его характеристик? Конечно можно, и для этого потребуется преобразовать силу в момент силы, а перемещение — в угол. В этом разделе демонстрируется такое преобразование, а также связь работы с изменением энергии.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Закладка Постоянная ссылка.
1 ЗвездаНельзя так писать о ЛоганеЧто-то о новом Логане так себе написаноЛоган - супер машинаРено Логан лучше всех! (1 оценок, среднее: 5,00 из 5)
Загрузка...