Содержание
Номинальные напряжения бытовых сетей (низкого напряжения): россия (ссср, снг)[ | ]
До 1926 года техническим регулированием электрических сетей общего назначения занимался Электротехнический отдел ИРТО, который только выпускал правила по безопасной эксплуатации. При обследовании сетей РСФСР перед созданием плана ГОЭЛРО было установлено, что на тот момент использовались практически все возможные напряжения электрических токов всех видов.
Начиная с 1926 года стандартизация электрических сетей перешла к Комитету по стандартизации при Совете Труда и Обороны (Госстандарт), который выпускал стандарты на используемые номинальные напряжения сетей и аппаратуры. Начиная с 1992 года Межгосударственный совет по стандартизации, метрологии и сертификации выпускает стандарты для электрический сетей стран входящих в ЕЭС/ОЭС.
Переменный ток 50 Гц с разделённой фазой или постоянный ток, двух-/трёхпроводные линии | Трёхфазный переменный ток, 50 Гц | |||||
110/220 В | 220/440 В | 3×120 В[р 1] (треугольник) | 127/220 В | 220/380 В | 230/400 В[р 2] | |
Временные правила ИРТО, 1891[3] | широко используется | запрещен[р 3] | разрешён | запрещен[р 3] | запрещен[р 3] | запрещен[р 3] |
Дополнение к временным правилам ИРТО от 1898[4] | широко используется | разрешён | широко используется | разрешён | разрешён | — |
ГОЭЛРО I очередь (1920)[5] | предпочтителен[р 4] | |||||
ОСТ 569 (1928)[6] | предпочтителен | предпочтителен | разрешён | — | предпочтителен[р 5] | — |
ОСТ 5155 (1932) | разрешён | разрешён | разрешён[р 6][р 7] | — | разрешён | |
ГОСТ 721-41[7][8] | разрешён | разрешён | допускается сохранение существующих установок | разрешён | предпочтителен[р 8] | — |
ГОСТ 5651-51[9][р 9] | разрешён | разрешён | -[р 10] | разрешён[р 10] | разрешён | — |
ГОСТ 721-62 | разрешён | разрешён | допускается сохранение существующих установок | разрешён | предпочтителен | — |
ГОСТ 5651-64[10][р 9] | — | разрешён | — | разрешён | разрешён | — |
ГОСТ 721-74 | разрешён | разрешён | допускается сохранение существующих установок | разрешён | предпочтителен | |
ГОСТ 21128-75[11] | разрешён | разрешён | — | для ранее разработанного оборудования[р 11] | предпочтителен | — |
ГОСТ 23366-78 | разрешён | разрешён | — | для ранее разработанного оборудования | предпочтителен | — |
ГОСТ 21128-83 | разрешён | разрешён | — | для ранее разработанного оборудования | предпочтителен | разрешён |
ГОСТ 5651-89[р 9] | — | разрешён | — | — | разрешён | — |
ГОСТ 29322-92 (МЭК 38-83) | — | — | — | — | разрешён до 2003 года | предпочтителен |
ГОСТ 29322-2022 (IEC 60038:2009) | — | — | — | — | в текст стандарта внесено примечание: «Однако … до сих пор продолжают применять.» | предпочтителен |
Примечания «Р»
- «Акционерное Общество Электрического Освещения 1886 года» использовало этот номинал (напряжение на зажимах трансформатора 133 В), что и было отражено в ОСТ 569. В результате гармонизации с рекомендациями МЭК в шкале стандартных напряжений ГОСТ 721 он был заменён на номинал 3×127 В, но допускалось сохранение существующих установок 3×120 В. Фактически, сети тех крупных городов, которые его использовали, уже переходили на «звезду» с номиналами 127/220 В и 220/380 В.
- Номинал трёхфазного переменного тока 230/400 В, начиная c ОСТ 569, 1928 года, являлся предпочтительным для источников тока (генераторов и трансформаторов).
- ↑ 1234
Использование тока высокого напряжения выше ±225 В или выше ∼110 В было запрещено в бытовых сетях, не требующих квалифицированного персонала. - Первоначально, в I очереди плана ГОЭЛРО было намечено строительство сетей 120/210 В, исходя из того, что в сетях некоторых крупных городов использовалось 3×120 В (треугольник), однако, при реализации, строили сети 127/220 В.
- 1928-1931 гг. Витебск, Вязьма, Бобруйск, Рыльск, Россошь, Златоуст, Камышин, Камень, Красноярск, Чита, Острогожск, Старобельск, Чугуев, Красноград, Хмельник, Купянск, Проскуров, Червоное … и др. См.: Гейлер Л.Б.
110 или 220 V в распределительных сетях населённых мест // Электричество. — 1933. — № 9. — С. 39. Впоследствии все крупные новые электросети СССР создавались на 220/380 В. - 1932-40 гг., Ленэнерго, переход старых сетей 3×120 В на 127/220 В. См.: Айзенберг Б.Л., Мануйлов Р.Е.
Заземление нейтрали городской кабельной сети низкого напряжения // Электричество. — 1940. — № 11. — С. 54. - 1936-47 гг., Мосэнерго, переход избранных районов старых сетей 3×120 В на 127/220 В. См.: Плюснин К.Л.
Низковольтная замкнутая сетка в Московской кабельной электросети // Электричество. — 1937. — № 22. — С. 7., и
Куликовский А.А.
Система городских распределительных сетей низкого напряжения с искусственными нейтральными точками // Электричество. — 1947. — № 9. — С. 45. - В других стандартах, связанных с промышленным применением, например, ГОСТ 185-41, номинал 127/220 В остался недоступен для новых изделий.
- ↑ 123
Стандарты ГОСТ 5651 — «Аппаратура радиоприёмная бытовая», в частности, определяли номиналы напряжения питания радиоприёмников. - ↑ 12
1950 г., начало перевода низковольтной сети со 127 В на 220/127 В и применения напряжения 380/220 В для электроснабжения новых жилых районов Москвы. См.:
Зуев Э.Н..
Московских окон негасимый свет
(неопр.)
. - 1970-79 гг., Киев, Ленинград и Харьков, в основном, перешли на 220/380 В. Хотя отдельные дома, в которых переход не завершился, встречались и позднее.
Преобразование переменного тока
Генераторы переменного тока создают в расчете на определенные, сравнительно небольшие, значения напряжения и мощности тока. Для практического использования электрической энергии в различных устройствах и приборах необходимы различные значения напряжений.
Трансформатор (рис. 19, а) — это электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток той же частоты, но другого напряжения. Схематическое изображение и условное обозначение трансформатора показаны на рисунке 19 6, в.
В простейшем случае трансформатор состоит из двух обмоток, надетых на общий сердечник. Обмотка трансформатора, на которую подается переменное напряжение, называется первичной, а обмотка, с которой снимается преобразованное переменное напряжение, — вторичной. Число витков в первичной обмотке трансформатора обозначим
Обмотки трансформатора могут быть расположены на сердечнике различным образом (рис. 20).
Принцип действия трансформатора основан на явлении электромагнитной индукции. Линии индукции магнитного поля, создаваемого переменным током в первичной обмотке, благодаря наличию сердечника практически без потерь (без рассеяния) пронизывают витки вторичной обмотки.
Поскольку магнитный поток во вторичной обмотке изменяется со временем, то согласно закону Фарадея в ней возбуждается ЭДС индукции. Подчеркнем, что трансформатор не годится для преобразования постоянного тока, поскольку магнитный поток, создаваемый в этом случае, не изменяется с течением времени.
Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС
Режимом холостого хода трансформатора называется режим с разомкнутой вторичной обмоткой. В этом случае напряжение на вторичной обмотке равно индуцируемой в ней ЭДС:
Кроме того, вследствие малости активного сопротивления первичной обмотки
Следовательно, в режиме холостого хода согласно выражению (1) получаем
Тип трансформатора характеризуется коэффициентом трансформации, который равен отношению числа витков первичной обмотки к числу витков вторичной:
Согласно выражению (2) отношение действующих значений напряжений на концах первичной и вторичной обмоток трансформатора в режиме холостого хода равно коэффициенту трансформации:
Рабочим ходом (режимом) трансформатора называется режим, при котором в цепь его вторичной обмотки включена некоторая нагрузка. Можно считать, что в этом случае действующие значения ЭДС, напряжений и токов в первичной и вторичной цепях, согласно закону Ома для полной цепи, связаны соотношениями
Включение нагрузки во вторичную цепь трансформатора приводит к появлению в ней тока. Согласно правилу Ленца, магнитный поток, создаваемый током во вторичной обмотке, стремится скомпенсировать изменение магнитного потока через витки вторичной обмотки, а значит, и через витки первичной.
Согласно закону сохранения энергии мощность тока, выделяемая во вторичной обмотке трансформатора, «черпается» из цепи его первичной обмотки. Пренебрегая потерями энергии, которые в современных трансформаторах не превышают 2 %, можем записать, что мощности тока в обеих обмотках трансформатора практически одинаковы:
Режимом короткого замыкания называется режим, при котором вторичная обмотка трансформатора замкнута без нагрузки. Данный режим опасен для трансформатора, поскольку в этом случае ток во вторичной обмотке максимален и происходят электрическая и тепловая перегрузки системы.
При работе трансформатора всегда имеются энергетические потери, связанные с такими физическими процессами, как:
- нагревание обмоток трансформатора при прохождении электрического тока;
- работа по перемагничиванию сердечника;
- рассеяние магнитного потока.
Наиболее значительные энергетические потери при работе трансформатора обусловлены тепловым действием вихревых токов (токов Фуко), возникающих в сердечнике при изменении пронизывающего его магнитного потока.
Для уменьшения тепловых потерь сердечники (магнитопроводы) трансформаторов изготовляют не из сплошного куска металла, а из тонких пластин специальной трансформаторной стали, разделенных тончайшими слоями диэлектрика (пластины покрывают лаком).
Для предотвращения перегрева мощных трансформаторов используется масляное охлаждение (рис. 21).
Современные трансформаторы имеют очень высокие КПД (до 95—99 %), что позволяет им работать практически без потерь.
Пример №1
Первичная обмотка трансформатора имеет
Решение
По определению коэффициент трансформации
где
Для вторичной обмотки трансформатора по закону Ома для замкнутой цепи можно записать:
где
Число витков во вторичной обмотке определится по формуле
Ответ:
Преобразование переменного тока и трансформатор
Генераторы переменного тока создают в расчете на определенные значения напряжения. Для практического использования электрической энергии во всевозможных устройствах и приборах необходимы различные значения напряжений. Для этого используются трансформаторы (от лат. transforrno — преобразую).
Первую модель (прототип) трансформатора создал в 1831 г. Майкл Фарадей, намотав на железное кольцо две изолированные обмотки, которую использовал в своих экспериментах. Трансформатор был впервые использован для изменения напряжения в 1878 г. русским ученым Павлом Николаевичем Яблочковым для питания изобретенных им источников света — «электрических свечей».
Трансформатор (рис. 37, а) — это электромагнитное устройство, преобразующее переменный ток одного напряжения в переменный ток другого напряжения с сохранением его частоты.
Трансформатор, увеличивающий напряжение, называют повышающим, а уменьшающий напряжение — понижающим. Схематическое изображение и условное обозначение трансформатора показаны на рисунке 37 б, в.
Самый простой трансформатор состоит из двух обмоток (катушек), надетых на общий замкнутый сердечник (см. рис. 37, а). Обмотка трансформатора, на которую подается переменное напряжение, называется первичной, а обмотка, с которой снимается преобразованное переменное напряжение, — вторичной. Число витков в первичной обмотке трансформатора обозначим
Обмотки трансформатора могут быть расположены на сердечнике различным образом (рис. 38).
Принцип действия трансформатора основан на явлении электромагнитной индукции. Магнитное поле, создаваемое переменным током в первичной обмотке (см. рис. 37, а), благодаря наличию замкнутого сердечника практически без потерь (без рассеяния) пронизывает витки вторичной обмотки.
Для этого сердечник изготовляется из специального (ферромагнитного) материала, что позволяет создаваемое током в обмотках поле почти полностью локализовать внутри сердечника. В результате магнитный поток существует только внутри сердечника и одинаков во всех сечениях. Это дает возможность считать мгновенные значения магнитных потоков во всех сечениях сердечника одинаковыми.
Пусть первичная обмотка трансформатора подключена к источнику тока с переменной ЭДС и на нее подается напряжение
Вследствие малого активного сопротивления первичной обмотки
Режимом холостого хода трансформатора называется режим с разомкнутой вторичной обмоткой. В этом случае напряжение на вторичной обмотке равно индуцируемой в ней ЭДС:
Следовательно, в режиме холостого хода из соотношения (1) получаем:
т. е. действующее значение напряжения
Тип трансформатора определяется коэффициентом трансформации, который равен отношению числа витков первичной катушки к числу витков вторичной:
Согласно выражению (2) отношение действующих значений напряжений на первичной и вторичной обмотках трансформатора в режиме холостого хода равно коэффициенту трансформации:
Как следует из соотношения (3), понижающим. Соответственно, при
повышающим.
Рабочим ходом (режимом) трансформатора называется режим, при котором в цепь его вторичной обмотки включена некоторая нагрузка. Включение нагрузки во вторичную цепь трансформатора приводит к появлению в ней тока. Согласно правилу Ленца магнитный поток, создаваемый током во вторичной обмотке, стремится скомпенсировать изменение магнитного потока через витки вторичной обмотки, а значит, и через витки первичной обмотки (общий сердечник).
Это приводит к некоторому уменьшению магнитного потока в первичной обмотке, для компенсации которого действующее значение силы тока в первичной обмотке трансформатора увеличивается. Следовательно, после включения нагрузки трансформатора во вторичную обмотку сила тока в его первичной катушке увеличивается таким образом, чтобы суммарный магнитный поток через первичную обмотку достиг прежней величины.
Трансформатор не производит, а преобразовывает энергию. Согласно закону сохранения энергии мощность тока, выделяемая в цепи вторичной обмотки трансформатора в режиме нагрузки, поступает из цепи его первичной обмотки, т. е. от внешнего источника. Пренебрегая потерями энергии, связанными с нагреванием обмоток и работой по перемагничиванию сердечника, которые в современных трансформаторах не превышают 2 %, можем записать, что мощности тока в цепях обеих обмоток трансформатора практически одинаковы:
Таким образом, повышая напряжение в несколько раз, трансформатор во столько же раз уменьшает силу тока.
Режимом короткого замыкания называется режим, при котором вторичная обмотка трансформатора замкнута без нагрузки. Данный режим опасен для трансформатора, поскольку в этом случае действующее значение тока во вторичной обмотке максимально и происходят электрическая и тепловая перегрузки системы.
При работе трансформатора всегда имеются энергетические потери, связанные с такими физическими процессами, как:
- нагревание обмоток трансформатора при прохождении электрического тока;
- работа по перемагничиванию сердечника;
- рассеяние магнитного потока.
Наиболее значительные энергетические потери при работе трансформатора обусловлены тепловым действием вихревых токов(токов Фуко), возникающих в сердечнике при изменении магнитного потока.
Для уменьшения тепловых потерь сердечники (магнитопроводы) трансформаторов изготовляют не из сплошного куска металла, а из тонких пластин специальной трансформаторной стали, разделенных тончайшими слоями диэлектрика (пластины покрывают лаком). Такая конструкция сердечника позволяет значительно увеличить его электрическое сопротивление, что приводит к уменьшению потерь на его нагревание.
Для предотвращения перегрева мощных трансформаторов используется масляное охлаждение.
Современные трансформаторы имеют очень высокие КПД (до 98—99 %), что позволяет им работать практически без потерь.
Пример №3
Определите силу тока
Дано:
Решение
По закону Ома сила тока в первичной обмотке:
где
Коэффициент трансформации:
где
По условию задачи:
Тогда сила тока в первичной обмотке:
Трансформатор. и передача энергии переменного тока
Чрезвычайно важным свойством переменного электрического тока является то, что напряжение и силу тока можно изменять (трансформировать) без ощутимых потерь энергии. Такие превращения особо важны для передачи электроэнергии на большие расстояния с минимальными затратами.
Так, доказано, что потери в линиях электропередач существенно уменьшаются, если передача происходит при высоком напряжении — несколько десятков, сотен киловольт. В местах потребления это напряжение приходится понижать до 380-220 В.
Все такие преобразования производятся с помощью весьма простого по устройству прибора — трансформатора.
Трансформатор (рис. 2.51) в большинстве случаев состоит из двух катушек-обмоток, имеющих общий ферромагнитный сердечник. Одна из катушек (она называется первичной) соединяется с генератором, а потребители (электродвигатели, лампы-обогреватели и т. п.) присоединяются ко вторичной обмотке трансформатора.
Puc. 2.51. Трансформатор переменного тока с двумя обмоткамиПринцип действия трансформатора переменного тока (рис. 2.52) основан на использовании явления электромагнитной индукции.
Рис. 2.52. Схема трансформатора переменного тока с двумя обмоткамиПеременный ток, который проходит первичной обмоткой 1, например, с количеством витков N1, создает в сердечнике переменное магнитное поле, оно в свою очередь индуцирует во вторичной обмотке трансформатора 2 с количеством витков N2 электродвижущую силу. Поскольку обмотки имеют общий сердечник, то в каждом их витке возникает электродвижущая < ила, пропорциональная количеству витков:холостого хода. В этом случае напряжение U2 равно электродвижущей силе
где k — коэффициент трансформации.
Если k > 1, то U2 > U1, и трансформатор называют повышающим; если k < 1, то U2 < U1и трансформатор будет называться понижающим.
Когда трансформатор соединить с потребителями, цепь вторичной обмотки замкнется. Это будет рабочий режим трансформатора. Поскольку обмотки и сердечник образуют замкнутую систему, то в ней действует закон сохранения и преобразования энергии.
Таким образом,
или
Только с помощью трансформатора переменного тока удалось эффективно решить проблему передачи электроэнергии па большие расстояния. Как указывалось выше, такая передача с незначительными потерями возможна при высоком напряжении. Подтверждением этого может быть решение следующей задачи.
Пример №7
Электроэнергию от электростанции мощностью 50 кВт передают с помощью линии сопротивлением 5 Ом. Определить потери напряжения и мощности в линейных про водах и коэффициент полезного действия в электросети в случаях, когда передача энергии осуществляется при напряжениях 1000 и 10 000 В.
Рассчитаем значение коэффициента полезного действия для разных значений напряжений:
Сравнение полученных результатов позволяет сделать выводы:1) повышение напряжения в линии в 10 раз во столько же раз уменьшает силу тока;2) повышение напряжения в линии в 10 раз значительно уменьшает потери мощности.
Налицо преимущества передачи электроэнергии при высоком напряжении. Этого можно достичь, применяя в линиях электропередачи трансформаторы, которые повышали бы напряжение перед тем, как ток поступает в линию электропередачи, и снижали бы ее на входе к потребителю.
На рисунке 2.53 представлена схема современной линии электропередач (ЛЭП) переменного тока.
Pиc. 2.53. Система передачи электроэнергии на расстояние
На всех промышленных электростанциях Украины работают электромеханические генераторы, вырабатывающие переменный ток напряжением 20 кВ и частотой 50 Гц. Повышение напряжения генератора выше этого значения опасно из-за возможности пробоя изоляции проводов в генераторе.
Поэтому повышение напряжения происходит за пределами генератора с помощью трансформаторов, которые повышают его до 500…750 кВ. Прежде чем подать электроэнергию потребителям, напряжение понижается с помощью понижающих трансформаторов согласно с потребностями предприятий, транспорта, потребителей бытовой сферы. В наши квартиры электричество подается при напряжении 220 В.
Итоги:
1. Основным признаком магнитного поля, который позволяет отличить ею от других полой, является его действие на движущийся заряд.
2. Силовое действие магнитного поля характеризуется магнитной индукцией — векторной величиной, определяющей силу, с которой магнитное поле действует на проводник с током или движущуюся заряженную частицу. Ее направление для прямого проводника определяется правилом правого винта (буравчика).
3. Сила, действующая в магнитном поле на проводник с током, называется силой Ампера. Ее модуль рассчитывается по формуле
Вектор силы Ампера лежит в плоскости, перпендикулярной к плоскости вектора скорости заряженных частиц и магнитной индукции. Ее направление определяется по правилу 126 левой руки: если левую руку расположить так, чтобы .линии магнитной индукции входили в ладонь, а четыре пальца показывали направление тока, то отставленный па 90° большой палец укажет на направление силы, действующей на проводник с током в магнитном поле.
4. На обособленную частицу, имеющую электрический за-ряд и движущуюся в магнитном поле, действует магнитная составляющая силы Лоренца:
5. Все без исключения вещества взаимодействуют с магнитным полем. Магнитные свойства вещества определяются его внутренним строением. По магнитным свойствам все вещества разделяются на диамагнетики, парамагнетики и ферромагнетики. В отличие от диа- и парамагнетиков, ферромагнетики имеют большую магнитную проницаемость как следствие их доменной структуры.
6. Магнитный поток — это физическая величина, которая характеризует магнитное поле и равна произведению магнитной индукции на площадь контура и косинус угла между вектором магнитной индукции и нормалью к плоскости контура:
Магнитный поток измеряется в веберах (Вб).
7. При изменении магнитной индукции поля в замкнутом проводнике возникает ЭДC индукции. ЭДC индукции пропорциональна скорости изменения магнитного потока:
8. ЭДС индукции в проводники, который движется в магнитном поле, возникает вследствие действия силы Лоренца на свободные электроны. Направление индукционного тока определяют по правилу правой руки и правилу Ленца: индукционный ток. возникающий в замкнутом проводнике, имеет такое направление, что его магнитное поле противодействует изменению магнитного поля, которое вызвало этот ток.
9. Вследствие взаимодействия проводника с током со своим магнитным полем возникает явление самоиндукции. Физическая величина, характеризующая электромагнитные свойства проводника, называется индуктивностью. Единицей индуктивности является генри (Гн).
10. ЭДС самоиндукции зависит от скорости изменения силы тока в проводнике и его индуктивности:
11. Энергия магнитного поля проводника с током пропорциональна его индуктивности и квадрату силы тока в нем:
Частота электрического тока: определение, формула, характеристики
Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частотапеременного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.
Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом — в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду.
В республиках бывшего СССР стандартной считается частотатокав 50 Гц.
Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 — в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.
Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:
Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.
Более подробно о частоте переменного тока Вы можете узнать из видео:
Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.
Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.
Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.
Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.
Ещё одно интересное видео о частоте переменного тока:
Экологические проблемы производства электрической энергии
Развитие цивилизации на нашей планете сопровождается непрерывным ростом ежегодного энергопотребления. Однако запасы природного топлива (нефти, газа, угля, дров, торфа) и иных полезных ископаемых на Земле ограничены, поскольку из-за изменения геологических условий их формирование в настоящее время практически прекратилось.
Наиболее распространенным энергоносителем на сегодняшний день является нефть, поскольку ее сравнительно легко добывать, транспортировать, очищать и использовать. Помимо этого, нефть также является сырьем для производства разнообразных синтетических материалов — красок, лекарств, синтетических волокон, пластмасс и т. д. Не зря ее называют «кровью экономики», поскольку уровень нефтедобычи определяет темпы мировой индустриализации.
По различным оценкам, в настоящее время выработка основных месторождений угля и нефти составляет около 60 %.
В нашей стране запасы нефти и угля не являются стратегическими. На территории Беларуси к основным видам добываемых топливных ресурсов следует отнести дрова и торф.
В настоящее время леса занимают около 30 % всей суши на Земле. Для сохранности леса его следует использовать лишь в тех пределах, в которых его можно восстановить. Соответственно, каждый год можно заготавливать I % нарастающих лесов, что составляет около 2 млрд
Работа электростанций вследствие их значительной мощности существенным образом влияет на состояние окружающей среды и приводит к появлению следующих экологических проблем:
- ТЭС — загрязнение атмосферы продуктами сгорания, изменение природного теплового баланса из-за рассеяния тепловой энергии;
- ГЭС — изменение климата, нарушение экологического равновесия, уменьшение пахотных площадей;
- АЭС — опасность радиоактивного загрязнения среды при авариях, проблемы захоронения радиоактивных отходов.
Одной из главных экологических проблем современности является рост выбросов в атмосферу продуктов сгорания топлива (в первую очередь углекислого газа). Углекислый газ «окутывает» Землю, подобно пленке, препятствуя ее охлаждению. Это приводит к парниковому эффекту, при котором среднегодовая температура поверхности Земли повышается.
В процессе своей жизнедеятельности человек расходует химическую энергию, получаемую организмом при расщеплении пищи. Таким образом, жизнь устроена так, что в конечном итоге каждый из нас потребляет часть энергии, рожденной на Солнце. С этой точки зрения вполне объяснимо поклонение наших древних пращуров богам Солнца, «дарующим жизнь всему сущему».
Рост энергопотребления заставляет ученых и инженеров искать альтернативные источники энергии, которые были бы возобновляемыми, т. е., в отличие от нефти и газа, могли бы самостоятельно восстанавливаться с течением времени.
К возобновляемым источникам энергии относят ветер, недра Земли (геотермальная энергия), морские приливы, а также солнечное излучение, используемое напрямую.
Энергия ветра уже достаточно успешно преобразуется в электроэнергию в многочисленных небольших ветряных генераторах в зонах устойчивых ветров (рис. 24) .
Проекты будущего предлагают использовать в качестве возобновляемых источников энергии колоссальную энергию океанических и воздушных течений: волн, тропических ураганов и торнадо. Ключевая причина их формирования — неравномерное нагревание Солнцем различных участков поверхности Земли.
Геотермальная энергия в местах естественных разломов используется для нужд человека. Так, например, г. Рейкьявик (столица Исландии) полностью отапливается за счет горячих геотермальных вод. Запасы геотермальной энергии достаточно велики, о чем можно судить по разрушительной силе землетрясений, извержений вулканов, гейзеров.
В настоящее время делаются первые шаги для использования энергии океанических приливов и отливов. Инженерная идея подобных проектов проста: если наполнить резервуары при приливе, то при отливе «уходящая» вода сможет вращать турбины и производить электричество.
Развитие современных технологий позволяет активно использовать энергию, вырабатываемую солнечными батареями. Так, в южных широтах энергии подобных батарей, установленных на крыше, хватает для энергоснабжения небольшого дома.
Современные технологии позволяют, используя солнечные батареи, получать электрическую энергию непосредственно от солнечного излучения не только на Земле, но и в космосе (рис. 25). Есть даже смелые проекты, в которых предлагается разместить солнечные батареи в ближнем космосе на расстоянии 36 ООО км от поверхности Земли.
Это так называемая «синхронная» орбита, на которой батареи будут казаться «неподвижными» для земного наблюдателя, поскольку период их обращения будет равен 24 ч. В этом случае батареи будут находиться в тени Земли только 2 % времени, что позволит производить в 60 раз больше электричества, чем при таких же условиях на Земле.
В настоящее время активно разрабатываются проекты использования для получения энергии реакции слияния легких ядер водорода (термоядерного синтеза). Привлекательность проектов обусловлена тем, что запасы водорода в Мировом океане практически неограниченны.
Возобновляемые источники энергии сравнительно безопасны, поскольку их использование практически не приводит к загрязнению окружающей среды.
Электромагнитные волны и их свойства
Впервые гипотезу о существовании электромагнитных волн высказал в 1864 г. шотландский физик Джеймс Максвелл. В своих работах он показал, что источниками электрического поля могут быть как электрические заряды, так и магнитные поля, изменяющиеся со временем.
В свою очередь магнитные поля могут возбуждаться либо движущимися электрическими зарядами (электрическим током), либо переменными электрическими полями.
Изменение индукции магнитного поля с течением времени вызывает появление в окружающем пространстве вихревого электрического поля. Силовые линии этого поля замкнуты, а его напряженность
Максвелл предположил, что любое изменение напряженности вихревого электрического поля сопровождается возникновением переменного магнитного поля (рис. 26, б).
Далее этот процесс может повторяться «до бесконечности», поскольку поля смогут попеременно воспроизводить друг друга даже в вакууме.
Совокупность связанных друг с другом периодически изменяющихся электрического и магнитного полей называют электромагнитным полем. Согласно теории Максвелла переменное электромагнитное поле распространяется в пространстве с конечной скоростью.
Рассмотрим подробнее процесс образования электромагнитного поля в пространстве, окружающем проводник.
Пусть в проводнике возбуждены электромагнитные колебания, в результате чего сила электрического тока в нем меняется со временем. Поскольку сила тока связана со скоростью движения свободных зарядов в проводнике, то скорость движения последних также будет изменяться со временем.
Это говорит о том, что свободные заряды внутри проводника будут двигаться с ускорением.
Согласно теории Максвелла при ускоренном движении свободных зарядов в проводнике в пространстве вокруг него создается переменное магнитное поле, которое порождает переменное вихревое электрическое поле. Последнее, в свою очередь, вновь вызывает появление переменного магнитного поля уже на большем расстоянии от заряда и т. д. (рис. 27).
Направление распространения волныЭлектромагнитное поле, распространяющееся в вакууме или в какой-либо среде с течением времени с конечной скоростью, называется электромагнитной волной (рис. 28).
Электромагнитные волны являются поперечными, поскольку скорость
Скорость распространения электромагнитных волн в вакууме с является максимально (предельно) достижимой величиной. В любом веществе их скорость распространения меньше с и зависит от его электрических и магнитных свойств.
Перечислим основные свойства электромагнитных волн:
- Распространяются не только в различных средах, но и в вакууме.
- Отражаются и преломляются на границах раздела сред.
- Являются поперечными.
- Распространяются в вакууме со скоростью
Экспериментально электромагнитные волны были открыты в 1887 г. немецким физиком Генрихом Рудольфом Герцем. Для их генерации он использовал устройство, впоследствии названное вибратором Герца (рис. 29).
Длина волны, излучаемой при проскакивании искры между электродами устройства, была
Герц считал, что такие волны невозможно использовать для передачи информации. Однако 7 мая 1905 г. русский ученый Александр Степанович Попов осуществил первую в мире передачу информации электромагнитными волнами — радиопередачу и положил начало эре радиовещания.
Свойства электромагнитных волн очень сильно зависят от их частоты. Спектр электромагнитного излучения удобно изображать в виде шкалы электромагнитных волн, приведенной на рисунке 30.
Классификация электромагнитных волн в зависимости от частот (длин волн) дается в таблице 5.
Таблица 5
Классификация электромагнитных волн
В настоящее время электромагнитные волны находят широкое применение в науке и технике:
- плавка и закалка металлов в электротехнической промышленности, изготовление постоянных магнитов (низкочастотные волны)-, телевидение, радиосвязь, радиолокация (радиоволны); мобильная связь, радиолокация (микроволны)-,
- сварка, резка, плавка металлов лазерами, приборы ночного видения (инфракрасное излучение)-,
- освещение, голография, лазеры (видимое излучение)-,
- люминесценция в газоразрядных лампах, закаливание живых организмов, лазеры (ультрафиолетовое излучение);
- рентгенотерапия, рентгеноструктурный анализ, лазеры (рентгеновское излучение)-,
- дефектоскопия, диагностика и терапия в медицине, исследование внутренней структуры атомов, лазеры, военное дело (гамма-излучение).
Электромагнитные волны и их свойства
Пример №2
Радиоприемник настроен на радиостанцию, работающую на длине волны
Решение
Длина волны определяется по формуле
где
Период колебаний в контуре находится по формуле
Запишем уравнения для двух длин волн:
Разделив второе уравнение на первое, получим
Из этого соотношения находим
Ответ:
Основные формулы:
В электрической цепи, состоящей из конденсатора и катушки индуктивности (идеальный колебательный контур), могут возникнуть электромагнитные колебания — периодические изменения заряда на обкладках конденсатора, тока в контуре, электрического поля между обкладками конденсатора и магнитного поля внутри катушки.
Период электромагнитных колебаний в идеальном колебательном контуре определяется формулой Томсона:
Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток:
Сопротивление R резистора, на котором в цепи переменного тока происходит превращение электрической энергии во внутреннюю энергию, называется активным или омическим сопротивлением.
Трансформатор — электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток той же частоты, но другого напряжения. Принцип действия трансформатора основан на явлении электромагнитной индукции.
Тип трансформатора определяется коэффициентом трансформации, который равен отношению числа витков первичной обмотки к числу витков вторичной обмотки трансформатора:
Если k < 1, то трансформатор повышающий, если k > 1 — понижающий.
Совокупность связанных друг с другом периодически изменяющихся электрического и магнитного полей называют электромагнитным полем.
Электромагнитной волной называется распространяющееся в вакууме или в какой-либо среде с течением времени с конечной скоростью переменное электромагнитное поле.
Электромагнитные волны являются поперечными, так как векторы
Скорость распространения электромагнитных волн в вакууме: